Single-shot 3D optical microscopy that can capture high-resolution information over a large volume has broad applications in biology. Existing 3D imaging methods using point-spread-function (PSF) engineering often have limited depth of field (DOF) or require custom and often complex design of phase masks. We propose a new, to the best of our knowledge, PSF approach that is easy to implement and offers a large DOF. The PSF appears to be axially V-shaped, engineered by replacing the conventional tube lens with a pair of axicon lenses behind the objective lens of a wide-field microscope. The 3D information can be reconstructed from a single-shot image using a deep neural network. Simulations in a 10× magnification wide-field microscope show the V-shaped PSF offers excellent 3D resolution (<2.5 µm lateral and ∼15 µm axial) over a ∼350 µm DOF at a 550 nm wavelength. Compared to other popular PSFs designed for 3D imaging, the V-shaped PSF is simple to deploy and provides high 3D reconstruction quality over an extended DOF.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.544552DOI Listing

Publication Analysis

Top Keywords

v-shaped psf
8
depth field
8
wide-field microscope
8
psf imaging
4
imaging extended
4
extended depth
4
field wide-field
4
wide-field microscopy
4
microscopy single-shot
4
single-shot optical
4

Similar Publications

Single-shot 3D optical microscopy that can capture high-resolution information over a large volume has broad applications in biology. Existing 3D imaging methods using point-spread-function (PSF) engineering often have limited depth of field (DOF) or require custom and often complex design of phase masks. We propose a new, to the best of our knowledge, PSF approach that is easy to implement and offers a large DOF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!