The topological disclination state (TDS) in topological insulators (TIs) has strong localization, and its impact on nonlinear effects has garnered significant attention. Second harmonic generations (SHGs) have been proven to be generated individually in topological corner states and topological edge states. However, the SHGs in TDSs have not been discussed so far. Here, a scheme for satisfying the SHG condition through the coupling of double TDS has been proposed, and the high conversion efficiency and strong robustness with disorder have been proven due to the doubly resonant TDS. Our method provides a new perspective for exploring the nonlinear effects of topological states caused by topological defects.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.543039DOI Listing

Publication Analysis

Top Keywords

second harmonic
8
topological disclination
8
states topological
8
nonlinear effects
8
topological
7
harmonic generation
4
generation double
4
double topological
4
states
4
disclination states
4

Similar Publications

Low-temperature phase (β-form) barium borate (BBO) is one of the most important nonlinear crystals that has been widely used for optical second-harmonic generation (SHG), especially with femtosecond sources. There was growing interest in its applications in the direct generation of terahertz (THz) radiations, but it was hindered by the lack of knowledge of its basic properties in the THz range. In a recent study based on first-principles quantum chemistry calculation, we found that the theoretically calculated refractive indices of β-BBO in the THz frequency range do not agree with the previously reported values.

View Article and Find Full Text PDF

Optical clocks require an ultra-stable laser to probe and precisely measure the frequency of the narrow-linewidth clock transition. We introduce a portable ultraviolet (UV) laser system for use in an aluminum quantum logic clock, demonstrating a fractional frequency instability of approximately mod   = 2 × 10. The system is based on an ultra-stable cavity with crystalline AlGaAs/GaAs mirror coatings, with a frequency quadrupling system employing two single-pass second-harmonic generation (SHG) stages.

View Article and Find Full Text PDF

Lithium niobate (LiNbO) has shown great potential for applications in nonlinear metasurfaces, thanks to its large second-order nonlinear coefficients and high integration capabilities. Optical resonances play a crucial role in further enhancing the nonlinear optical responses of LiNbO metasurfaces (LNMS). In this study, both numerically and experimentally, we designed and fabricated a metasurface structure that supports toroidal dipole (TD) resonance to enhance second-harmonic generation (SHG).

View Article and Find Full Text PDF

LiNbO domain structures have been widely applied in nonlinear beam shaping, quantum light generation, and nonvolatile ferroelectric memory. The recent developments in nanoscale domain engineering techniques make it possible to fabricate sub-diffracted nanodomains in LiNbO crystal for high-speed modulation and high-capacity storage. However, it still lacks a feasible and efficient way to characterize these nanoscale domains.

View Article and Find Full Text PDF

The emission of N lasing at 391 nm from 800 nm femtosecond laser filament in air at 1 atm presents significant challenges due to the quenching effect induced by oxygen molecules. We introduce a simple technique for the 391 nm N lasing emission induced by a corona electric field-assisted femtosecond filament in air. This technique greatly addresses the challenge of exciting a 391 nm lasing from 800 nm femtosecond laser filament in air at 1 atm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!