The introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm. The defect states related to impurities and structural defects contribute to the absorption in sub-bandgap (1100-2500 nm). Vertically structured devices based on the inert element-doped black silicon exhibit the responsivity of 350 mA/W for 1550 nm and 165 mA/W for 1310 nm at 12 V operating bias, respectively, proving its potential application in infrared detection.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.541860DOI Listing

Publication Analysis

Top Keywords

inert element
8
helium argon
8
black silicon
8
silicon
6
enhancing sub-bandgap
4
sub-bandgap photo-response
4
photo-response silicon
4
silicon inert
4
element co-hyperdoping
4
co-hyperdoping introduction
4

Similar Publications

The introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.

View Article and Find Full Text PDF

A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries.

Nat Commun

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.

The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.

View Article and Find Full Text PDF

Sorption of Platinum and Palladium on Polyethylene Microplastics in Natural Water.

Molecules

December 2024

Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland.

In this work, for the first time, the sorption behaviour of platinum and palladium on polyethylene microplastics (PE-MP) was studied. To simulate natural conditions, part of PE-MP was subjected to the ageing process in lake water under the influence of solar radiation. The original and aged PE-MP was characterised using elemental analysis, FT-IR, SEM-EDX, and nitrogen porosimetry methods.

View Article and Find Full Text PDF

Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to their favorable physical and chemical properties-the high content of aluminosilicate minerals (60-90%)-flotation tailings can be effectively treated and reused through geopolymerization technology, thereby adding value to this waste.

View Article and Find Full Text PDF

Li-Based Nanoprobes with Boosted Photoluminescence for Temperature Visualization in NIR Imaging-Guided Drug Release.

Nano Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!