Dark current density, a critical parameter in perovskite photodetectors (PPDs), largely depends on the quality of the perovskite film. Herein, we introduce a new small molecule in antisolvent strategy to enhance perovskite film quality during the crystallization of Cs(FAMA)Pb(IBr). COTIC-4Cl, an N-type narrow bandgap nonfullerene small molecule with specific functional group, could strongly bind to the uncoordinated Pb in the perovskite with assistance of antisolvent, enabling rapid supersaturation of perovskite solution and form dense structures under low-temperature annealing. This strategy leads to the decreased nonradiative recombination and improved carrier transport efficiency in COTIC-4Cl-modified perovskites. The PPDs based on COTIC-4Cl-modified films exhibit a broad spectral response from 300 to 815 nm, an exceptionally low dark current density of 2.17 × 10 A cm, and enhanced detectivities of 1.84 × 10and 3.09 × 10 Jones at 0 and -0.5 V bias, respectively. Improved responsivity and detectivity at 650-780 nm result from strong near-infrared light absorption by COTIC-4Cl. These optimized PPDs are comparable to commercial silicon photodetectors, promising significant advancements in cost-effective photodetector technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c13528 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
Dark current density, a critical parameter in perovskite photodetectors (PPDs), largely depends on the quality of the perovskite film. Herein, we introduce a new small molecule in antisolvent strategy to enhance perovskite film quality during the crystallization of Cs(FAMA)Pb(IBr). COTIC-4Cl, an N-type narrow bandgap nonfullerene small molecule with specific functional group, could strongly bind to the uncoordinated Pb in the perovskite with assistance of antisolvent, enabling rapid supersaturation of perovskite solution and form dense structures under low-temperature annealing.
View Article and Find Full Text PDFSmall Methods
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States.
Copper-tantalate, CuTaO (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C) production through photoelectrochemical (PEC) CO reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase.
View Article and Find Full Text PDFAging Dis
January 2025
Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body.
View Article and Find Full Text PDFDalton Trans
January 2025
Chemistry Division, Bhabha Atomic Research, Centre, Mumbai 400085, India.
Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
In this study an (AlGa)O barrier layer is inserted between β-GaO and GaN in a p-GaN/n-GaO diode photodetector, causing the dark current to decrease considerably, and device performance to improve significantly. The β-GaO/β-(AlGa)O/GaN n-type/Barrier/p-type photodetector achieves a photocurrent gain of 1246, responsivity of 237 A W, and specific detectivity of 5.23 × 10 cm Hz W under a bias of -20 V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!