Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

Published: January 2025

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes. The review also explores cost reduction strategies, such as integrating hydrogen production and mineral recovery from desalination by-products. Passive technologies and process optimization are proposed to minimize operational costs and energy consumption, supporting long-term sustainability. This review serves as a resource for decision-makers, offering insights into the strategic use of NPP waste heat in desalination to address water scarcity while promoting energy efficiency and sustainability.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2024.399DOI Listing

Publication Analysis

Top Keywords

waste heat
20
npp waste
12
nuclear power
8
power plant
8
heat desalination
8
energy efficiency
8
heat
7
waste
5
desalination
5
plant waste
4

Similar Publications

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

Insights into bacterial cellulose for adsorption and sustained-release mechanism of flavors.

Food Chem X

January 2025

Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.

The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.

View Article and Find Full Text PDF

Maintaining an optimal indoor thermal environment is crucial for enhancing the welfare and productivity of livestock in intensive breeding farms. This paper investigated the application of a combined geothermal heat pump with a precision air supply (GHP-PAS) system for cooling dairy cows on a dairy farm. The effectiveness of the GHP-PAS system in mitigating heat stress in lactating dairy cattle, along with its energy performance and local cooling efficiency in the free stalls were evaluated.

View Article and Find Full Text PDF

As one of the bulk solid wastes in the Yellow River basin in China, fluorite tailings urgently need to be utilized as resources. In this paper, NaOH and NaCO were used for alkali thermal activation of ground fluorite tailings under different temperature conditions, and the reactivity was analyzed by XRD, SEM and compressive strength after hydration, so as to evaluate the feasibility of fluorite tailings as geopolymer precursor. The results show that the fluorite tailings can exhibit certain reactivity under alkaline heat excitation, and significant amorphous glass phase can be detected.

View Article and Find Full Text PDF

Development of a Fire-Retardant and Sound-Insulating Composite Functional Sealant.

Materials (Basel)

December 2024

School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler system consisting of carbon nanotubes (CNTs) decorated with layered double hydroxides (LDHs), ammonium dihydrogen phosphate (ADP), and artificial marble waste powder (AMWP), namely CLAA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!