Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction. To overcome this bottleneck, it is required that trained MLPs exhibit transferability across different enzyme environments and reacting species, thereby eliminating the need for retraining with each new enzyme variant. In this study, we explore this potential by evaluating the transferability of a pretrained ΔMLP model across different enzyme mutations within the MM environment using the QM/MM-based ML architecture developed by Pan, X. 2021, 17(9), 5745-5758. The study includes scenarios such as single point substitutions, a homologous enzyme from different species, and even a transition to an aqueous environment, where the last two systems have MM environment that is substantially different from that used in MLP training. The results show that the ΔMLP model effectively captures and predicts the effects of enzyme mutations on electrostatic interactions, producing reliable free energy profiles of enzyme-catalyzed reactions without the need for retraining. The study also identified notable limitations in transferability, particularly when transitioning from enzyme to water-rich MM environments. Overall, this study demonstrates the robustness of the Pan et al.'s QM/MM-based ML architecture for application to diverse enzyme systems, as well as the need for further research and the development of more sophisticated MLP models and training methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c01487DOI Listing

Publication Analysis

Top Keywords

machine learning
8
quantum mechanical/molecular
8
mechanical/molecular mechanical
8
evaluating transferability
8
free energy
8
mlp models
8
enzyme
8
Δmlp model
8
enzyme mutations
8
qm/mm-based architecture
8

Similar Publications

Prenatal stress has a well-established link to negative biobehavioral outcomes in young children, particularly for girls, but the specific timing during gestation of these associations remains unknown. In the current study, we examined differential effects of timing of prenatal stress on two infant biobehavioral outcomes [i.e.

View Article and Find Full Text PDF

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

Annu Rev Biomed Eng

January 2025

1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.

View Article and Find Full Text PDF

Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!