The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed. In this work, we report the structural dynamics and degradation pathway of Cu oxide nanoparticles (CuO NPs) during the CORR by using in situ small-angle X-ray scattering (SAXS) and X-ray absorption spectroscopy (XAS). The in situ SAXS reveals a reduction in the size of NPs when subjected to a potential at which no reaction products are detected. At potentials where the CORR starts to occur, CuO NPs are agglomerated through a particle migration and coalescence process in the early stage of the reaction, followed by Ostwald ripening (OR) as the dominant degradation mechanism for the remainder of the reaction. As the applied potential becomes more negative, the OR process becomes more dominant, and for the most negative applied potential, OR dominates for the entire reaction time. The morphological changes are linked to a gradual decrease in the formation rate for multicarbon products (CH and ethanol). Other reaction parameters, including reaction intermediates and local high pH, induce changes in the agglomeration process and final morphology of the CuO NPs electrode, supported by post-mortem ex situ microscopic analysis. The in situ XAS analysis suggests that the CuO NPs reduced into the metallic state before the structural transformation was observed. The introduction of high surface area carbon supports with ionomer coating mitigates the degree of structural transformation and detachment of the CuO NPs electrode. These findings show the dynamic nature of Cu nanocatalysts during the CORR and can serve as a rational guideline toward a stable catalyst system under electrochemical conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c14720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!