Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity. This study aimed to prepare a biocompatible and therapeutically potent Korean ginseng nanoemulsion (KGS-NE) using ginseng seed oil (GSO), optimize its encapsulation and drug delivery efficiency, and evaluate its antiviral activity.
Results: Various techniques were utilized to confirm the KGS-NE formation. Energy-dispersive X-ray spectroscopy identified gold nanoparticles with the highest Au peak at 2.1 keV. Selected area diffraction patterns revealed crystallographic structures. FT-IR spectrometry detected functional groups, with peaks at 2922.09 cm (alkene C-H stretching), 1740.24 cm (aldehyde C=O stretching), and 1098.07 cm (C-O stretching in secondary alcohol). Storage stability studies showed that KGS-NE maintained its size and stability for 6 months at 4 °C. The KGS-NE exhibited a dose-dependent suppression of HCoV-OC43 viral replication in Vero E6 cells. RNA sequencing analysis unveiled differentially expressed genes (DEGs) specifically involved in the ABC transporters signaling pathway. KGS-NE oral administration facilitated the recovery of mice induced with the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, as confirmed by inflammatory markers expression in lung tissue. In the Syrian hamster infected with the SARS-CoV-2 model, the lungs dissected showed enlarged morphology and induced inflammatory cytokines. This effect was mitigated with KGS-NE oral administration, as observed through H&E and qRT-PCR analysis. Biochemical analysis at various oral administration concentrations demonstrated that KGS-NE had no adverse effects on the kidney and liver.
Conclusions: Our findings strongly suggest that oral administering KGS-NE in mice and Syrian hamster models has the potential to effectively mitigate lung inflammation against coronavirus. This indicates a promising new strategy for developing the antiviral nano-agent against SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734238 | PMC |
http://dx.doi.org/10.1186/s12951-024-03064-5 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.
The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!