A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

Published: January 2025

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs. Subsequently, a poly(vinyl alcohol) (PVA) crosslinked phenylboronic acid (PBA)-modified hyaluronic acid (HA) hydrogel (HPP) was used to encapsulate the si-Fe NPs, resulting in a bifunctional hydrogel (si-Fe-HPP) with reactive oxygen species (ROS)-responsive and RNAi therapeutic properties. Studies in vitro demonstrated that si-Fe-HPP exhibited excellent biocompatibility, anti-inflammatory effects and prolonged stable retention time in knee joint. Intra-articular injection of si-Fe-HPP significantly attenuated cartilage degradation in mice with destabilization of the medial meniscus (DMM)-induced OA. The si-Fe-HPP treatment not only notably alleviated synovitis, osteophyte formation and subchondral bone sclerosis, but also markedly improved physical activity and reduced pain in DMM-induced OA mice. This study reveals that si-Fe-HPP, with its ROS-responsive and RNAi abilities, can significantly protect chondrocytes and attenuate OA progression, providing novel insights and directions for the development of therapeutic materials for OA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737235PMC
http://dx.doi.org/10.1186/s12951-024-03046-7DOI Listing

Publication Analysis

Top Keywords

matrix metalloproteinase-13
8
metalloproteinase-13 sirna
8
si-fe nps
8
ros-responsive rnai
8
si-fe-hpp
5
ros-responsive hydrogel
4
hydrogel encapsulated
4
encapsulated matrix
4
sirna nanocarriers
4
nanocarriers attenuate
4

Similar Publications

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly.

View Article and Find Full Text PDF

Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway.

J Orthop Surg Res

January 2025

Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.

Background: Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

[Zhuanggu Jianxi Decoction reduces synovial tissue inflammation in human knee osteoarthritis by regulating LXRs/NF-κB signaling pathway].

Zhongguo Zhong Yao Za Zhi

December 2024

Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education Fuzhou 350122, China.

This study aims to explore the mechanism of Zhuanggu Jianxi Decoction in reducing synovial tissue inflammation in human knee osteoarthritis(KOA) via the liver X receptors(LXRs)/nuclear factor(NF)-κB signaling pathway. The synovial tissue samples were collected from 5 healthy volunteers and 30 KOA synovitis patients and cultured in vitro. The samples from the heathy volunteers were set as the normal group, and those from KOA synovitis patients were randomized into synovitis, Zhuanggu Jianxi Decoction, LXRα inhibitor, and N-CoR inhibitor groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!