Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Methods: Patients who underwent multiple drilling were enrolled. Radiomics and deep learning features were extracted from pelvic radiographs and selected by LASSO-COX regression, radiomics and DL signature were then built. The clinical variables were selected through univariate and multivariate Cox regression analysis, and the clinical, radiomics, DL and DLRC model were constructed. Model performance was evaluated using the concordance index (C-index), area under the receiver operating characteristic curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), calibration curves, and Decision Curve Analysis (DCA).

Results: A total of 144 patients (212 hips) were included in the study. ARCO classification, bone marrow edema, and combined necrotic angle were identified as independent risk factors for collapse. The DLRC model exhibited superior discrimination ability with higher C-index of 0.78 (95%CI: 0.73-0.84) and AUC values (0.83 and 0.87) than other models. The DLRC model demonstrated superior predictive performance with a higher C-index of 0.78 (95% CI: 0.73-0.84) and area under the curve (AUC) values of 0.83 for 3-year survival and 0.87 for 5-year survival, outperforming other models. The DLRC model also exhibited favorable calibration and clinical utility, with Kaplan-Meier survival curves revealing significant differences in survival rates between high-risk and low-risk cohorts.

Conclusion: This study introduces a novel approach that integrates radiomics and deep learning techniques and demonstrates superior predictive performance for no-collapse survival after multiple drilling. It offers enhanced discrimination ability, favorable calibration, and strong clinical utility, making it a valuable tool for stratifying patients into high-risk and low-risk groups. The model has the potential to provide personalized risk assessment, guiding treatment decisions and improving outcomes in patients with osteonecrosis of the femoral head.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12911-025-02859-2DOI Listing

Publication Analysis

Top Keywords

radiomics deep
16
deep learning
16
multiple drilling
16
dlrc model
16
no-collapse survival
12
predicting no-collapse
8
survival patients
8
patients osteonecrosis
8
femoral head
8
curve auc
8

Similar Publications

Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Methods: Patients who underwent multiple drilling were enrolled.

View Article and Find Full Text PDF

Deep Learning Radiomics Nomogram Based on MRI for Differentiating between Borderline Ovarian Tumors and Stage I Ovarian Cancer: A Multicenter Study.

Acad Radiol

January 2025

Department of Radiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China (X.W., X.C., Y.C., S.C., M.W.). Electronic address:

Rationale And Objectives: To develop and validate a deep learning radiomics nomogram (DLRN) based on T2-weighted MRI to distinguish between borderline ovarian tumors (BOTs) and stage I epithelial ovarian cancer (EOC) preoperatively.

Materials And Methods: This retrospective multicenter study enrolled 279 patients from three centers, divided into a training set (n = 207) and an external test set (n = 72). The intra- and peritumoral radiomics analysis was employed to develop a combined radiomics model.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility of utilizing artificial intelligence (AI)-predicted biparametric MRI (bpMRI) image features for predicting the aggressiveness of prostate cancer (PCa).

Materials And Methods: A total of 878 PCa patients from 4 hospitals were retrospectively collected, all of whom had pathological results after radical prostatectomy (RP). A pre-trained AI algorithm was used to select suspected PCa lesions and extract lesion features for model development.

View Article and Find Full Text PDF

A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Radiol Artif Intell

January 2025

From the Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P. R. China (J.K., C.F.W., Z.H.C., G.Q.Z., Y.Q.W., L.L., Y.S.); Department of Radiation Therapy, Nanhai People's Hospital, The Sixth Affiliated Hospital, South China University of Technology, Foshan, China (J.Y.P., L.J.L.); and Department of Electronic Engineering, Information School, Yunnan University, Kunming, China (W.B.L.).

Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN).

View Article and Find Full Text PDF

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Acad Radiol

January 2025

Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China (X.W., C.C., W.C., Y.G., X.L., X.J.); Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, China (X.W., J.W., C.C., W.C., Y.G., K.G., Y.C., Y.S., J.C., X.L., X.J.). Electronic address:

Rationale And Objectives: The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC.

Materials And Methods: We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!