Perovskite heterostructures have attracted wide interest for their photovoltaic and optoelectronic applications. The interdiffusion of halide anions leads to the poor stability and shorter lifetime of the halide perovskite heterostructures. Covering organic cations on the surface of perovskite heterostructures, the diffusion of ions can effectively be suppressed. However, the migration mechanism on two-dimensional lead halide perovskite lateral heterostructures under different organic cations remains inadequately explored. In this work, we performed first-principles calculations on the ion migration in two-dimensional (2D) lead halide perovskite lateral heterostructures with different interface defects and different cations. We found that the migration of iodine atoms across the interface in the heterostructures is more preferable than that of bromine atoms, regardless of the cations. Meanwhile, the migration of iodine atoms from the in-plane to the out-plane direction has the lowest energy barrier compared to other directions. Our calculations also reveal that both the type of cation and the migration path selected affect the energy barrier for anion migration, exhibiting either inhibitory or promoting effects. Specifically, the organic cation 345FAn, an ammonium ligand, showed an excellent promoting effect on the anion migration, while the BA cation exhibited an inhibiting effect. The calculated interdiffusion rate includes the interfacial single bromine vacancy, which is consistent with previous experimental observations. However, the heterostructures with interfacial single iodine defects exhibit a higher interdiffusion rate. Our findings on the ion migration mechanism in lead halide perovskite lateral heterostructures contribute to both experimental discussions and theoretical insights.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11155DOI Listing

Publication Analysis

Top Keywords

halide perovskite
20
lead halide
16
perovskite lateral
16
lateral heterostructures
16
two-dimensional lead
12
perovskite heterostructures
12
heterostructures
9
organic cations
8
migration
8
migration mechanism
8

Similar Publications

Perovskite heterostructures have attracted wide interest for their photovoltaic and optoelectronic applications. The interdiffusion of halide anions leads to the poor stability and shorter lifetime of the halide perovskite heterostructures. Covering organic cations on the surface of perovskite heterostructures, the diffusion of ions can effectively be suppressed.

View Article and Find Full Text PDF

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility.

View Article and Find Full Text PDF

Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, IPb (PbI) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI3 (FA = CH(NH2)2) material, are found to create electron (hole) traps when the surfaces with IPb (PbI) antisite defects are negatively (positively) charged.

View Article and Find Full Text PDF

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!