The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Published: January 2025

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies. In this study, we aim to bridge this knowledge gap by leveraging the transcriptome and genome data from five Liposcelis species.

Result: Using HMMER method and manual annotation, we have identified common gene families associated with olfactory processes, including odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs). Specifically, we identified 94, 118, 26, 47, and 34 olfactory-related genes in L. bostrychophila, L. tricolor, L. entomophila, L. decolor, and L. yangi, respectively. Comparison of quantities revealed that the number of ORs and IRs in the genome is significantly higher than those identified in the transcriptome. This discrepancy may be due to the specific expression of these genes in certain tissues or their lack of expression during the experimental stage. Simultaneously, analysis of gene expression profiles across different developmental stages revealed varying periods of peak expression for olfactory-related genes. These results suggest that the identification of olfactory-related genes in booklice on a genome-wide scale is more feasible and reliable than using a transcriptome-based approach. Additionally, compared to parasitic lice, booklice possess significantly more olfactory-related genes. This increase may be due to the inability of parasitic lice to survive without a host, whereas booklice have a wide range of feeding habits and live in complex and variable environments. Furthermore, we observed that the IR gene family in L. tricolor has undergone a certain degree of amplification, which may facilitate its adaptation to diverse environmental conditions.

Conclusions: We identified olfactory-related genes of five Liposcelis species for the first time, providing valuable insights for future functional investigations into olfactory genes associated with pheromone and odorant recognition. These discoveries present promising targets for effectively managing psocid pests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737068PMC
http://dx.doi.org/10.1186/s12864-025-11231-7DOI Listing

Publication Analysis

Top Keywords

olfactory-related genes
20
parasitic lice
12
genes
8
olfactory genes
8
psocodea liposcelididae
8
wide range
8
olfactory system
8
olfactory
5
booklice
5
olfactory-related
5

Similar Publications

The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.

View Article and Find Full Text PDF

Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, (Lepidoptera: Pyralidae).

Life (Basel)

December 2024

Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China.

The beet webworm, , is a typical migratory pest. Although miRNAs participate in many physiological functions, little is known about the functions of miRNAs in olfactory regulation. In this study, 1120 (869 known and 251 novel) miRNAs were identified in the antennae of by using high-throughput sequencing technology.

View Article and Find Full Text PDF

Genomic signatures of sensory adaptation and evolution in pangolins.

BMC Genomics

December 2024

Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.

Background: Pangolin is one of the most endangered mammals with many peculiar characteristics, yet the understanding of its sensory systems is still superficial. Studying the genomic basis of adaptation and evolution of pangolin's sensory system is expected to provide further potential assistance for their conservation in the future.

Results: In this study, we performed a comprehensive comparative genomic analysis to explore the signature of sensory adaptation and evolution in pangolins.

View Article and Find Full Text PDF

Insects rely on olfaction for mating, finding oviposition sites, and locating hosts. is a serious pest that severely damages forests. Differential expression analysis of olfactory-related genes between males and females is the basis for elucidating the functions of olfactory-related proteins in .

View Article and Find Full Text PDF

Aedes albopictus is an important vector of arboviruses and prefers small containers of stagnant water as oviposition sites. One of the mechanisms mosquitoes use to search for suitable oviposition sites is relying on odor cues from prospective sites and their surroundings. The genetic and molecular bases of this behavior are not known for Ae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!