Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.e., leaf width (LW), leaf length (LL) and leaf area (LA), was performed using a recombinant inbred line (RIL) population and four QTLs for LW, two QTLs for LL and four QTLs for LA were detected. Transcriptome analysis revealed that differentially expressed genes (DEGs) were enriched in the GO terms related to microtubules, and the expression level of several genes involved in cell division also showed significant differences. Microscopic analysis suggested that the cell number was the main factor regulating leaf size. Combining QTL mapping and RNA sequencing, four promising candidate genes, including BnaA10G0085600ZS, BnaA10G0156900ZS, BnaC03G0441700ZS, and BnaC08G0410600ZS, were proposed to control leaf size by regulating cell division. The results of QTL, transcriptome analysis, and anatomical observation were highly consistent, collectively revealing that genes related to cell division played a crucial role in regulating the leaf size traits in rapeseed. These findings provided further insights into the genetic mechanism of leaf size and built fundamental theory basis for high-density tolerance breeding in rapeseed.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-025-11205-9DOI Listing

Publication Analysis

Top Keywords

leaf size
32
leaf
12
qtl mapping
12
cell division
12
candidate genes
8
size
8
qtls qtls
8
transcriptome analysis
8
regulating leaf
8
genes
5

Similar Publications

Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.

View Article and Find Full Text PDF

Citrus maxima extract-coated versatile gold nanoparticles display ROS-mediated inhibition of MDR-Pseudomonas aeruginosa and cancer cells.

Bioorg Chem

January 2025

CSIR- Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

The expanding prevalence of microbial resistance to conventional treatments has triggered a race to develop alternative/improved strategies to combat drug-resistant microorganisms in an efficient manner. Here, the lethal impact of the biosynthesized gold nanoparticles (AuNPs) against multi-drug resistant (MDR) bacteria has been elucidated. AuNPs, synthesized from the extracts of the fruit, leaf and peel of the Citrus maxima plant, were physicochemically characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), electron microscopy and spectroscopic techniques not only confirmed the production of AuNPs of size below 100 nm but also identified the phytochemicals adsorbed onto the surface of NPs.

View Article and Find Full Text PDF

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

In the cultivation of green chili peppers, the similarity between the fruit and background color, along with severe occlusion between fruits and leaves, significantly reduces the efficiency of harvesting robots. While increasing model depth can enhance detection accuracy, complex models are often difficult to deploy on low-cost agricultural devices. This paper presents an improved lightweight Pepper-YOLO model based on YOLOv8n-Pose, designed for simultaneous detection of green chili peppers and picking points.

View Article and Find Full Text PDF

A comprehensive dataset on lemon leaf disease can surely bring a lot of potentials into the development of agricultural research and the improvement of disease management strategies. This dataset was developed from 1354 raw images taken with professional agricultural specialist guidance from July to September 2024 in Charpolisha, Jamalpur, and further enhanced with augmented techniques, adding 9000 images. The augmentation process involves a set of techniques-flipping, rotation, zooming, shifting, adding noise, shearing, and brightening-to increase variety for different lemon leaf condition representations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!