Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles. Here we report ferroelectricity with concomitant Coulomb screening in different vdW heterostructures free of moiré interfaces containing monolayer graphene, boron nitride (BN) and transition metal chalcogenide layers. We observe a ferroelectric hysteretic response in a BN/monolayer graphene/BN, as well as in BN/WSe/monolayer graphene/WSe/BN heterostructure, but also when replacing the stacking fault-containing BN with multilayer twisted MoS, a prototypical sliding ferroelectric. Our control experiments exclude alternative mechanisms, such that we conclude that ferroelectricity originates from stacking faults in the BN flakes. Hysteretic switching occurs when a conductive ferroelectric screens the gating field electrically and controls the monolayer graphene through its polarization field. Our results relax some of the material and design constraints for device applications based on sliding ferroelectricity and should enable memory device or the combination with diverse vdW materials with superconducting, topological or magnetic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-024-01846-4DOI Listing

Publication Analysis

Top Keywords

ferroelectricity concomitant
12
concomitant coulomb
12
coulomb screening
12
van der
8
der waals
8
monolayer graphene
8
ferroelectricity
6
screening van
4
waals heterostructures
4
heterostructures interfacial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!