Tuning of parameters is a very important but complex issue in the Evolutionary Algorithms' design. The paper discusses the new, based on the Fuzzy Logic concept of tuning mutation size in these algorithms. Data on evolution collected in prior generations are used to tune the size of mutations. A Fuzzy Logic Part uses this historical data to improve the algorithm's convergence to a global optimum. The Fuzzy Logic Part keeps a desirable relation of exploration and exploitation, so the algorithm's resistance to getting stuck in a local optimum is improved too. Several tests on Function Optimization Problems were performed to prove the suitability of the proposed method. A set of data and functions with different difficulties, recommended in the commonly used benchmarks are used for experiments. The results of these experiments suggest that the proposed method is efficient and could be used for a wide range of similar problems of optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-86349-5 | DOI Listing |
Sci Rep
January 2025
Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, Łódź, 90-236, Poland.
Tuning of parameters is a very important but complex issue in the Evolutionary Algorithms' design. The paper discusses the new, based on the Fuzzy Logic concept of tuning mutation size in these algorithms. Data on evolution collected in prior generations are used to tune the size of mutations.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Mechanical Engineering, Thuyloi University, Hanoi, Vietnam.
Road surface roughness is the cause of vehicle vibration, which is considered a system disturbance. Previous studies on suspension system control often ignore the influence of disturbances while designing the controller, leading to system performance degradation under severe vibration conditions. In this work, we propose a control method to improve active suspension performance that reduces vehicle vibration by eliminating the influence of road disturbances.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Biological and Pharmaceutical Environmental Sciences and Technologies, University of Campania "L. Vanvitelli", Via Antonio Vivaldi, 43, Caserta 81100, CE, Italy.
This study explores the application of fuzzy soft classification techniques combined with vegetation indices to address spectral overlap and heterogeneity in agricultural image processing. The methodology focuses on the integration of three key vegetation indices: Soil-Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index (MSAVI), and Modified Chlorophyll Absorption in Reflectance Index (MCARI), with Modified Possibilistic C-Means (MPCM) clustering. The analysis involves preprocessing the image data, calculating the vegetation indices, and applying the MPCM algorithm to perform soft classification, allowing pixels to belong to multiple classes with varying degrees of membership.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Power and Machines Department, Egyptian Chinese University, Cairo, Egypt.
This research is dedicated to improving the control system of wind turbines (WT) to ensure optimal efficiency and rapid responsiveness. To achieve this, the fuzzy logic control (FLC) method is implemented to control the converter in the rotor side (RSC) of a doubly fed induction generator (DFIG) and its performance is compared with an optimized proportional integral (PI) controller. The study demonstrated an enhancement in the performance of the DFIG through the utilization of the proposed FLC, effectively overcoming limitations and deficiencies observed in the conventional controllers, this approach significantly improved the performance of the wind turbine.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
Improving energy efficiency is crucial for smart factories that want to meet sustainability goals and operational excellence. This study introduces a novel decision-making framework to optimize energy efficiency in smart manufacturing environments, integrating Intuitionistic Fuzzy Sets (IFS) with Multi-Criteria Decision-Making (MCDM) techniques. The proposed approach addresses key challenges, including reducing carbon footprints, managing operating costs, and adhering to stringent environmental standards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!