While the cerebellum's role in orchestrating motor execution and routines is well established, its functional role in supporting cognition is less clear. Previous studies claim that motricity and cognition are mapped in different areas of the cerebellar cortex, with an anterior/posterior dichotomy. However, most of the studies supporting this claim either use correlational methods (neuroimaging) or are lesion studies that did not consider central covariates (such as age, gender, treatment presence, and deep nuclei impairment) known to influence motor and cognitive recoveries in patients. Here, we used voxel-based lesion-symptom mapping (VLSM) on children and young adults having undergone cerebellar tumor resection. This approach allows to control for these covariates and evaluate causal relationships between brain anatomy and behavioral performances to disentangle the anatomic substrate of motor and cognitive functions. VLSM analyses showed that both motor and cognitive impairments were greater in children and young adults with lesions of the posterior cerebellum. These results highlight distinct and overlapping structural correlates of motor and cognitive performance in the cerebellum and are consistent with structural and functional hypotheses of integration of the cerebellum in motor and cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12311-024-01778-8DOI Listing

Publication Analysis

Top Keywords

motor cognitive
20
children young
12
young adults
12
cognitive functions
8
motor
7
cognitive
5
causally mapping
4
cerebellum
4
mapping cerebellum
4
cerebellum children
4

Similar Publications

Background: Nitrous oxide (N₂O), commonly known as laughing gas, is widely recognized for its anesthetic and analgesic effects, and is frequently used in medical contexts. However, its misuse can lead to significant neurological complications, which are often under-recognized in clinical practice. Recent data on such cases in Germany are rare.

View Article and Find Full Text PDF

While the cerebellum's role in orchestrating motor execution and routines is well established, its functional role in supporting cognition is less clear. Previous studies claim that motricity and cognition are mapped in different areas of the cerebellar cortex, with an anterior/posterior dichotomy. However, most of the studies supporting this claim either use correlational methods (neuroimaging) or are lesion studies that did not consider central covariates (such as age, gender, treatment presence, and deep nuclei impairment) known to influence motor and cognitive recoveries in patients.

View Article and Find Full Text PDF

The alteration of neurovascular coupling (NVC), where acute localized blood flow increases following neural activity, plays a key role in several neurovascular processes including aging and neurodegeneration. While not equivalent to NVC, the coupling between simultaneously measured cerebral blood flow (CBF) with arterial spin labeling (ASL) and blood oxygenation dependent (BOLD) signals, can also be affected. Moreover, the acquisition of BOLD data allows the assessment of resting state (RS) fMRI metrics.

View Article and Find Full Text PDF

Loud noise exposure is one of the leading causes of permanent hearing loss. Individuals with noise-induced hearing loss (NIHL) suffer from speech comprehension deficits and experience impairments to cognitive functions such as attention and decision-making. Here, we investigate the specific underlying cognitive processes during auditory perceptual decision-making that are impacted by NIHL.

View Article and Find Full Text PDF

Anecdotally, horses' gaits sound rhythmic. Are they really? In this study, we quantified the motor rhythmicity of horses across three different gaits (walk, trot, and canter). For the first time, we adopted quantitative tools from bioacoustics and music cognition to quantify locomotor rhythmicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!