The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks. We verify our modelled atmospheric emissions by comparing them with top-down point-in-time emission-rate estimates and cumulative emission estimates derived from airborne, satellite and tall tower data. We obtain consistency between our modelled atmospheric emissions and top-down estimates and find that 465 ± 20 thousand metric tons of methane were emitted to the atmosphere. Although, to our knowledge, this represents the largest recorded amount of methane released from a single transient event, it is equivalent to 0.1% of anthropogenic methane emissions for 2022. The impact of the leaks on the global atmospheric methane budget brings into focus the numerous other anthropogenic methane sources that require mitigation globally. Our analysis demonstrates that diverse, complementary measurement approaches are needed to quantify methane emissions in support of the Global Methane Pledge.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-024-08396-8DOI Listing

Publication Analysis

Top Keywords

atmospheric emissions
16
methane emissions
12
methane
10
nord stream
8
stream subsea
8
subsea pipeline
8
pipeline leaks
8
amount methane
8
methane released
8
top-down estimates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!