The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons. The absence of SOX4 and SOX11 in post-mitotic excitatory neurons results in a marked reduction in the size of the basolateral amygdala complex (BLC), claustrum (CLA) and PIR. These transcription factors control BLC formation through direct regulation of Tfap2d expression. Cross-species analyses, including in humans, identified conserved Tfap2d expression in developing excitatory neurons of BLC, CLA, PIR and the associated transitional areas of the frontal, insular and temporal cortex. Although the loss and haploinsufficiency of Tfap2d yield similar alterations in learned threat-response behaviours, differences emerge in the phenotypes at different Tfap2d dosages, particularly in terms of changes observed in BLC size and BLC-PFC connectivity. This underscores the importance of Tfap2d dosage in orchestrating developmental shifts in BLC-PFC connectivity and behavioural modifications that resemble symptoms of neuropsychiatric disorders. Together, these findings reveal key elements of a conserved gene regulatory network that shapes the development and function of crucial VLp excitatory neurons and their PFC connectivity and offer insights into their evolution and alterations in neuropsychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-08361-5 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
J Ethnopharmacol
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519031, China. Electronic address:
Ethnopharmacological Relevance: Jieyu I Formula (JY-I) is an improved version of the classic formula "Sini San" documented in the books Shanghan Lun, which is known for regulating the liver and treating depression. However, the disturbance of neuronal signal transmission in the neural circuit of the brain is closely related to the occurrence of depression, yet its neural mechanism is still unclear.
Aim Of The Study: This study aimed to observe the antidepressant effect of JY-I on depressed mice induced by lipopolysaccharide and its underlying central nervous system mechanisms, focusing on the prefrontal cortex (PFC) to lateral habenular nucleus (LHb) neural circuit in the depressed mice model.
Anesthesiology
January 2025
Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563100, Guizhou Province, China.
Background: The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here we explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing GABA transmission to pyramidal neurons.
View Article and Find Full Text PDFPLoS Biol
January 2025
Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China.
The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.
View Article and Find Full Text PDFNeuroreport
January 2025
Department of Neurosurgery.
Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!