Unmanned aerial vehicle (UAV) path planning is a constrained multi-objective optimization problem. With the increasing scale of UAV applications, finding an efficient and safe path in complex real-world environments is crucial. However, existing particle swarm optimization (PSO) algorithms struggle with these problems as they fail to consider UAV dynamics, resulting in many infeasible solutions and poor convergence to optimal solutions. To address these challenges, we propose a spherical vector-based adaptive evolutionary particle swarm optimization (SAEPSO) algorithm. This algorithm, based on spherical vectors, directly incorporates UAV dynamic constraints and introduces improved tent map and reverse learning to enhance the diversity and distribution of initial solutions. Additionally, dynamic nonlinear and adaptive factors are integrated to balance exploration and exploitation capabilities. To avoid local optima in highly complex environments, we propose an adaptive acceleration strategy for poor particles, and an evolutionary programming strategy is incorporated to further improve the optimization capability. Finally, we conducted comparative studies and in six benchmark scenarios with varying threat levels, and the results demonstrated that the proposed algorithm outperforms others in the initial solution effectiveness, the final solution accuracy, convergence stability, and scalability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735934 | PMC |
http://dx.doi.org/10.1038/s41598-025-85912-4 | DOI Listing |
Sci Rep
January 2025
Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India.
Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.
View Article and Find Full Text PDFSci Rep
January 2025
Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, 110168, Liaoning, China.
The problem of ground-level ozone (O) pollution has become a global environmental challenge with far-reaching impacts on public health and ecosystems. Effective control of ozone pollution still faces complex challenges from factors such as complex precursor interactions, variable meteorological conditions and atmospheric chemical processes. To address this problem, a convolutional neural network (CNN) model combining the improved particle swarm optimization (IPSO) algorithm and SHAP analysis, called SHAP-IPSO-CNN, is developed in this study, aiming to reveal the key factors affecting ground-level ozone pollution and their interaction mechanisms.
View Article and Find Full Text PDFISA Trans
January 2025
Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai, China; BNU-HKBU United International College Tangjiawan, Rd. JinTong 2000#, Zhuhai, China. Electronic address:
In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia.
Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.
View Article and Find Full Text PDFIn 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, traditional image processing methods may lead to high false positive rates, which is unacceptable in disease monitoring and early warning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!