The rapid increase of novel per- and polyfluoroalkyl substances (PFAS) raises concerns, while their identification remains challenging. Here, we develop a two-layer homolog network approach for PFAS nontarget screening using mass spectrometry. The first layer constructs networks between homologs, with evaluation showing that it filters 94% of false candidates. The second layer builds a network between classes to expedite the identification of PFAS. We detected 94 PFAS in twelve waterproof products and two related industrial sludges, including 36 novel PFAS not previously reported in any sample. A local dataset is constructed for retrospective analysis by re-analyzing our previous samples, revealing fifteen novel PFAS in samples collected in 2005. The retrieval of the public database MassIVE uncovers novel PFAS in samples from seven countries. Here, we reveal the historic and global presence of novel PFAS, providing guidance for the management and policy-making concerning persistent chemicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735632 | PMC |
http://dx.doi.org/10.1038/s41467-025-56035-1 | DOI Listing |
J Hazard Mater
January 2025
University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany. Electronic address:
Two novel and unique adsorptive materials, one (Fluorolock®) from clay mineral sepiolite coated with the cationic polymer polydiallyldimethylammionium chloride (pDADMAC) and the other (Intraplex®) from colloidal activated carbon were specially developed for the in situ remediation of per- and polyfluoroalkyl substances (PFAS) in the saturated zone. We evaluated the potential of both materials to immobilize PFAS in soils under flow conditions via soil column experiments using groundwater, which was contaminated with PFAS in the field. Furthermore, the potential ecotoxicological effects of both materials on aquatic organisms were assessed by exposing the soil column effluent to Daphnia magna.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States.
The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
The rapid increase of novel per- and polyfluoroalkyl substances (PFAS) raises concerns, while their identification remains challenging. Here, we develop a two-layer homolog network approach for PFAS nontarget screening using mass spectrometry. The first layer constructs networks between homologs, with evaluation showing that it filters 94% of false candidates.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43100 Parma, Italy.
The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!