Structural basis of phosphate export by human XPR1.

Nat Commun

Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.

Published: January 2025

Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer. The structure consists of a scaffold domain (TM1, TM3-4) and a core domain (TM2, TM5-10) structurally related to ion-translocating rhodopsins. Bound phosphate is observed in a tunnel within the core domain at a narrow point that separates the tunnel into intracellular and extracellular vestibules. This site contains a cluster of basic residues that coordinate phosphate and a conserved W573 essential for export function. Loss of inositol pyrophosphate binding is accompanied by structural movements in TM9 and the W573 sidechain, closing the extracellular vestibule and blocking phosphate export. These findings provide insight into XPR1 mechanism and pave the way for further in-depth XPR1 studies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-55995-8DOI Listing

Publication Analysis

Top Keywords

phosphate export
8
human xpr1
8
core domain
8
phosphate
6
xpr1
5
structural basis
4
basis phosphate
4
export human
4
xpr1 phosphorus
4
phosphorus crucial
4

Similar Publications

Structural basis of phosphate export by human XPR1.

Nat Commun

January 2025

Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.

Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.

View Article and Find Full Text PDF

FvPHR1 Improves the Quality of Woodland Strawberry Fruit by Up-Regulating the Expression of FvPHT1;7 and FvSWEET9.

Plant Cell Environ

January 2025

Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.

Article Synopsis
  • Phosphorus is crucial for plant growth, but excessive fertilizer use can lead to environmental issues; plants manage phosphate supply through intricate signaling pathways.
  • The study focused on the role of PHR1 in Fragaria vesca (strawberries), showing that overexpressing the FvPHR1 gene enhances phosphate uptake and photosynthesis efficiency by activating specific downstream genes.
  • FvPHR1 also aids in sugar transport from leaves to fruit, suggesting its complex role in improving strawberry fruit quality and providing insights for developing better cultivars with efficient phosphorus utilization and higher sugar content.
View Article and Find Full Text PDF

The identification of XPR1 as a voltage- and phosphate-activated phosphate-permeable ion channel.

Res Sq

December 2024

Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.

Maintaining a balance of inorganic phosphate (Pi) is vital for cellular functionality due to Pi's essential role in numerous biological processes. Proper phosphate levels are managed through Pi import and export, facilitated by specific Pi transport proteins. Although the mechanisms of Pi import have been extensively studied, the processes governing Pi export remain less understood.

View Article and Find Full Text PDF

Genetic and biochemical determinants in potentially toxic metals resistance and plant growth promotion in Rhizobium sp LBMP-C04.

World J Microbiol Biotechnol

December 2024

Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.

The association of bacteria resistant to potentially toxic metals (PTMs) with plants to remove, transfer, or stabilize these elements from the soil is an appropriate tool for phytoremediation processes in metal-contaminated environments. The objective of this study was to evaluate the potential of Rhizobium sp. LBMP-C04 for phytoremediation processes and plant growth promotion in metal-contaminated soils.

View Article and Find Full Text PDF

Sugar Transport and Signaling in Shoot Branching.

Int J Mol Sci

December 2024

Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France.

The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!