Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping.

Nat Commun

Institute for Quantum Inspired and Quantum Optimization, Hamburg University of Technology, Hamburg, Germany.

Published: January 2025

Estimation of the energy of quantum many-body systems is a paradigmatic task in various research fields. In particular, efficient energy estimation may be crucial in achieving a quantum advantage for a practically relevant problem. For instance, the measurement effort poses a critical bottleneck for variational quantum algorithms. We aim to find the optimal strategy with single-qubit measurements that yields the highest provable accuracy given a total measurement budget. As a central tool, we establish tail bounds for empirical estimators of the energy. They are helpful for identifying measurement settings that improve the energy estimate the most. This task constitutes an NP-hard problem. However, we are able to circumvent this bottleneck and use the tail bounds to develop a practical, efficient estimation strategy, which we call ShadowGrouping. As the name indicates, it combines shadow estimation methods with grouping strategies for Pauli strings. In numerical experiments, we demonstrate that ShadowGrouping improves upon state-of-the-art methods in estimating the electronic ground-state energies of various small molecules, both in provable and practical accuracy benchmarks. Hence, this work provides a promising way, e.g., to tackle the measurement bottleneck associated with quantum many-body Hamiltonians.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-54859-xDOI Listing

Publication Analysis

Top Keywords

quantum many-body
12
efficient energy
8
energy estimation
8
many-body hamiltonians
8
tail bounds
8
energy
5
estimation
5
quantum
5
guaranteed efficient
4
estimation quantum
4

Similar Publications

Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping.

Nat Commun

January 2025

Institute for Quantum Inspired and Quantum Optimization, Hamburg University of Technology, Hamburg, Germany.

Estimation of the energy of quantum many-body systems is a paradigmatic task in various research fields. In particular, efficient energy estimation may be crucial in achieving a quantum advantage for a practically relevant problem. For instance, the measurement effort poses a critical bottleneck for variational quantum algorithms.

View Article and Find Full Text PDF

Green's function theory has emerged as a powerful many-body approach not only in condensed matter physics but also in quantum chemistry in recent years. We have developed a new all-electron implementation of the BSE@GW formalism using numeric atom-centered orbital basis sets (Liu, C. 2020, 152, 044105).

View Article and Find Full Text PDF

In closed systems, the celebrated Lieb-Schultz-Mattis (LSM) theorem states that a one-dimensional locally interacting half-integer spin chain with translation and spin rotation symmetries cannot have a non-degenerate gapped ground state. However, the applicability of this theorem is diminished when the system interacts with a bath and loses its energy conservation. In this letter, we propose that the LSM theorem can be revived in the entanglement Hamiltonian when the coupling to the bath renders the system short-range correlated.

View Article and Find Full Text PDF

While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data.

View Article and Find Full Text PDF

Direct View of Gate-Tunable Miniband Dispersion in Graphene Superlattices Near the Magic Twist Angle.

ACS Nano

January 2025

Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.

Superlattices from twisted graphene mono- and bilayer systems give rise to on-demand many-body states such as Mott insulators and unconventional superconductors. These phenomena are ascribed to a combination of flat bands and strong Coulomb interactions. However, a comprehensive understanding is lacking because the low-energy band structure strongly changes when an electric field is applied to vary the electron filling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!