Bacterial pathogens possess a remarkable capacity to sense and adapt to ever-changing environments. For example, Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in aquatic ecosystems and human hosts through dynamic survival strategies. In this study, we investigated the role of three photolyases, enzymes that repair DNA damage caused by exposure to UV radiation and blue light, in the environmental survival of V. cholerae. Among these, we identified cry1 as critical for resistance to blue light, as mutations in this gene, but not in the other photolyase genes, rendered V. cholerae susceptible to such stress. Expression of cry1 was induced by blue light and regulated by RpoE and the anti-sigma factor ChrR. We further showed that nitric oxide (NO), a host-derived stressor encountered during infection, also activated cry1 expression. We found that one of the two cysteine residues in ChrR was important for sensing reactive nitrogen species (RNS), thereby modulating cry1 expression. While Cry1 was not required for V. cholerae colonization in animal models, pre-induction of Cry1 by RNS in vivo or in vitro enhanced V. cholerae resistance to blue light. These findings suggest that host-derived NO encountered during infection primes V. cholerae for survival in blue-light-rich aquatic environments, supporting its transition between host and environmental niches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.15340 | DOI Listing |
Nanotechnology
January 2025
Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, INDIA.
This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (Φ) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The demand for extended shelf life and food safety in the food industry continues to rise. At the same time, the environmental burden of traditional plastic packaging materials is becoming increasingly serious. Therefore, in this study, an intelligent bilayer film with a pH-sensitive inner indicator film based on Artemisia Sphaerocephala Krasch.
View Article and Find Full Text PDFBioresour Technol
January 2025
Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
This study investigates the photoinduction techniques for the maximization of astaxanthin production in Chromochloris zofingiensis following heterotrophic growth. Leveraging blue light, this study enhanced carbon allocation by suppressing the tricarboxylic acid cycle and activating the methylerythritol phosphate and pentose phosphate pathways to facilitate astaxanthin accumulation. Under blue light, an astaxanthin content of 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!