Superatoms are stable clusters that mimic the chemical behavior of individual atoms in the periodic table. Many endeavors have been devoted to the design and characterization of various superatoms, while engineering superatoms to mimic the chemistry of chalcogens remains a challenge. In this paper, we present a new superchalcogen by evaluating a hollow tetrahedral AlO cluster with theoretical calculations. By comparing the AlO with its daughter dianion (AlO) in terms of stability, aromaticity, electronic properties, and chemical behavior in compounds, we find that this cluster tends to get two additional electrons to reach a more stable electronic state, which is the origin of the identity of superchalcogens. The adaptive natural density partitioning (AdNDP) analysis illustrates that this AlO cluster accommodates two electrons by a 4-center-2-electron bond formed between the four face-centered Al atoms. Moreover, the AlO cluster has exothermic first and second adiabatic electron affinity (EA), indicating that the dianion (AlO) is stable against spontaneous electron emission and fragmentation in the gas phase. This reflects the size advantage of superchalcogens when compared with chalcogens. Interestingly, we further study a cluster with one more electron than the superchalcogen AlO, namely, H@(AlO) and find that it is a superhalogen due to its large vertical and adiabatic EA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c06789 | DOI Listing |
Neurol Int
December 2024
Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA.
Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling.
View Article and Find Full Text PDFSensors (Basel)
November 2024
College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830002, China.
BF, volatile amines (VOAs), and biogenic amines (BAs) are the key indicators in chemical reaction catalysis and food quality monitoring. In this study, we present two types of fluorescent sensors, a hydrazone ligand (HL)-based fluorescent sensor for BF detection and a novel sensor array using six boron difluoride (BF) hydrazone complexes (BFHs) for monitoring VOAs and BAs. Spectral research indicates that the interaction mechanism between the HLs and BF is based on intramolecular charge transfer (ICT).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France.
Aquaporins (AQPs) are natural proteins that can selectively transport water across cell membranes. Heterogeneous H-bonding of water with the inner wall of the pores of AQPs is of maximal importance regarding the optimal stabilization of water clusters within channels, leading to selective pore flow water transport against ions. To gain deeper insight into the water permeation mechanisms, simpler artificial water channels (AWCs) have been developed.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China. Electronic address:
Previous studies found red-edge tea polysaccharides (RETPS)-3 and 4 have anti-allergic effects. To investigate the anti-food allergy activity of the RETPS-3/4, the ovalbumin-induced Balb/c mouse food allergy model was established. Food allergy symptoms, serum inflammatory factors, spleen and intestinal pathology were analyzed.
View Article and Find Full Text PDFSensors (Basel)
October 2024
Scientific Direction Chemical and Physical Health Risks, Service of Medicines and Health Products, Sciensano, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium.
The detection and quantification of additives in tobacco products are critical for ensuring consumer safety and compliance with regulatory standards. Traditional analytical techniques, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and others, although effective, suffer from drawbacks, including complex sample preparation, high costs, lengthy analysis times, and the requirement for skilled operators. This study addresses these challenges by evaluating the efficacy of mid-infrared (MIR) spectroscopy and near-IR (NIR) spectroscopy, coupled with multivariate analysis, as potential solutions for the detection and quantification of additives in tobacco products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!