Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization. PA and PT showed 2.5 and 5.2 times higher insecticidal activity against than fipronil, and PT had 3.9 times greater antibacterial activity against . The synergistic effect realizes the balance of amphiphilicity, enhances the biological activity of PT, improves the phloem fluidity, and promotes the absorption and transportation of substances. In addition, this synergistic effect reduces the band gap width, improves the light absorption capacity, induces cells to produce active reactive oxygen species and free radicals (ROS: ·O, ·OH), and destroys the cytomembrane so that PT can better enter the cell, resulting in cell death. PT has excellent natural light self-degradation performance and converts to the phenylpyrazole parent moiety, which enhances biological activity and greatly reduces the environmental residues, implying that nano-organometallic pesticide (PT) provides a new idea for its natural degradation and fluorescence detection of pesticide residues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c11589DOI Listing

Publication Analysis

Top Keywords

biological activity
12
natural light
8
light self-degradation
8
phenylpyrazole amine
8
amine derivatives
8
one-pot microwave
8
cells produce
8
reactive oxygen
8
oxygen species
8
enhances biological
8

Similar Publications

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Context-dependent similarity analysis of analogue series for structure-activity relationship transfer based on a concept from natural language processing.

J Cheminform

January 2025

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.

Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.

View Article and Find Full Text PDF

Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.

View Article and Find Full Text PDF

SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.

J Exp Clin Cancer Res

January 2025

Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.

Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.

View Article and Find Full Text PDF

Background: This study explored the ethical issues associated with community-based HIV testing among African, Caribbean, and Black (ACB) populations in Canada, focusing on their perceptions of consent, privacy, and the management of HIV-related data and bio-samples.

Methods: A qualitative community-based participatory research (CBPR) approach was employed to actively engage ACB community members in shaping the research process. The design included in-depth qualitative interviews with 33 ACB community members in Manitoba, Canada.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!