Inhibition of Kv1.1 channels ameliorates Cu(II)-induced microglial activation and cognitive impairment in mice.

Neurochem Int

Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China. Electronic address:

Published: January 2025

Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia. This study was designed to explore the role of Kv1.1 channels in copper-evoked microglial neuroinflammation. BV-2 microglial cells were treated with Cu(II). DiBAC4(3) was used to measure membrane potential. Microglial activation and neuronal loss were detected by enzyme-linked immunosorbent assay, Western blotting, and immunostaining. Learning and memory function was assessed with Morris water maze task. Cu(II) caused a hyperpolarized membrane potential in microglial cells, an effect abolished by functional Kv1.1 blockade. Blockade of Kv1.1 and knock-down of Kv1.1 with small interfering RNA repressed Cu(II)-induced microglial production of pro-inflammatory mediators. Also, Kv1.1 inhibition attenuated activation of PI3K/Akt-ERK1/2 signaling pathway and production of mitochondrial reactive oxidative species as well as nuclear factor-κB activation in Cu(II)-stimulated microglia. Moreover, the Cu(II)-caused, microglia-mediated neurotoxicity (indicated by reduced neuronal survival and increased dendritic loss) was attenuated by Kv1.1 knock-down. In an in vivo mouse model, hippocampal injection of Cu(II) caused elevated Kv1.1 mRNA (but not other Kv1 channels) expression and enhanced microglial Kv1.1 immunoreactivity in the hippocampus. Furthermore, blockade of Kv1.1 attenuated Cu(II)-induced microglial activation and neuronal dendritic loss in the hippocampus and learning and memory dysfunction. These findings suggest that inhibition of Kv1.1 ameliorates Cu(II)-induced microglial activation and cognitive impairment. Thus, it might represent a potential molecular target for anti-inflammatory therapy of neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2025.105936DOI Listing

Publication Analysis

Top Keywords

microglial activation
20
cuii-induced microglial
16
microglial
10
kv11
10
inhibition kv11
8
kv11 channels
8
ameliorates cuii-induced
8
activation cognitive
8
cognitive impairment
8
neurodegenerative disorders
8

Similar Publications

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

Inhibition of Kv1.1 channels ameliorates Cu(II)-induced microglial activation and cognitive impairment in mice.

Neurochem Int

January 2025

Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China. Electronic address:

Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.

View Article and Find Full Text PDF

Autophagy in microglia is essential for the clearance of amyloid-beta (Aβ) and amyloid plaques in Alzheimer's disease. However, reports regarding the levels of autophagy in microglia have been inconsistent; some studies indicate an early enhancement followed by a subsequent reduction, while others describe a persistently weakened state. Notably, there is a lack of systematic studies documenting the temporal changes in microglial autophagy.

View Article and Find Full Text PDF

Long-Term Exposure to Tire-Derived 6-PPD Quinone Causes Neurotoxicity and Neuroinflammation via Inhibition of HTR2A in C57BL/6 Mice.

Environ Sci Technol

January 2025

School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China.

-(1,3-dimethylbutyl)-'-phenyl--phenylenediamine quinone (6-PPDQ), a novel contaminant derived from tire wear, has raised concerns due to its potential neurotoxicity, yet its long-term effects on mammalian neurological health remain poorly understood. This study investigates the neurotoxic and neuroinflammatory impacts of prolonged 6-PPDQ exposure using male C57BL/6 mice. Behavioral assessments revealed significant cognitive deficits, while biochemical analyses demonstrated increased levels of reactive oxygen species, apoptosis, and blood-brain barrier (BBB) disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!