Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g., solid cancer). In contrast, inverse dose protraction effects (IDPEs) in which dose protraction enhances radiation effects have not been well recognized, nor comprehensively reviewed. Here, we review the current knowledge on IDPEs of low linear energy transfer (LET) radiation. To the best of our knowledge, since 1952, 157 biology, epidemiology or clinical papers have reported IDPEs following external or internal low-LET irradiation with photons (X-rays, γ-rays), β-rays, electrons, protons or helium ions. IDPEs of low-LET radiation have been described for biochemical changes in cell-free macromolecules (DNA, proteins or lipids), DNA damage responses in bacteria and yeasts, DNA damage, cytogenetic changes, neoplastic transformation and cell death in mammalian cell cultures of human, rodent or bovine origin, mutagenesis in silkworms, cytogenetic changes, induction of cancer (solid tumors and leukemia) and non-cancer effects (male sterility, cataracts and diseases of the circulatory system), tumor inactivation and survival in non-human mammals (rodents, rabbits, dogs and pigs), and induction of cancer and non-cancer effects (skin changes and diseases of the circulatory system) in humans. In contrast to a growing body of phenomenological evidence for manifestations of IDPEs, there is limited knowledge on mechanistic underpinnings, but proposed mechanisms involve cell cycle-dependent resensitization and low dose hyper-radiosensitivity. These necessitate continued studies for further mechanistic developments and assessment of implications of scientific evidence for radiation protection (e.g., in terms of a dose rate effectiveness factor).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrrev.2025.108531 | DOI Listing |
Mutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).
View Article and Find Full Text PDFMutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.
View Article and Find Full Text PDFRadiat Res
April 2024
GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany.
We present an extension of the Local Effect Model (LEM) to include time-dose relationships for predicting effects of protracted and split-dose ion irradiation at arbitrary LET. With this kinetic extension, the spatial and temporal induction and processing of DNA double strand breaks (DSB) in cellular nuclei can be simulated for a wide range of ion radiation qualities, doses and dose rates. The key concept of the extension is based on the joint spatial and temporal coexistence of initial DSB, leading to the formation of clustered DNA damage on the µm scale (as defined e.
View Article and Find Full Text PDFSci Rep
December 2023
Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11, New York, NY, 10032, USA.
The biological effects of densely-ionizing radiations such as neutrons and heavy ions encountered in space travel, nuclear incidents, and cancer radiotherapy, significantly differ from those of sparsely-ionizing photons and necessitate a comprehensive understanding for improved protection measures. Data on lifespan studies of laboratory rodents exposed to fission neutrons, accumulated in the Janus archive, afford unique insights into the impact of densely ionizing radiation on mortality from cancers and various organ dysfunction. We extracted and analyzed data for 21,308 individual B6CF1 mice to investigate the effects of neutron dose, fractionation, protraction, age, and sex on mortality.
View Article and Find Full Text PDFBirth
June 2024
College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Background: Optimizing care during labor protraction is a key strategy for reducing cesareans, especially among people with obesity. The pathophysiology of labor dystocia remains poorly understood, limiting precise interventions targeting the cause of protraction.
Methods: In this secondary analysis of nulliparas (n = 92) with obesity (BMI ≥ 30 kg/m) and spontaneous labor onset, we classified labor into four phenotypes based on duration of protraction and birth route: (1) no protraction, (2) short protraction and vaginal birth, (3) extended protraction meeting criteria for labor arrest, but with eventual progression and vaginal birth, and (4) extended protraction meeting criteria for labor arrest and cesarean birth.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!