Novel susceptibility genes for sleep apnea revealed by a cross-tissue transcriptome-wide association study.

Int J Biol Macromol

Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China. Electronic address:

Published: January 2025

Sleep apnea (SA) is a sleep disorder characterized by frequent interruptions in breathing during sleep and is widely recognized as a significant global public health concern. Although genome-wide association studies (GWAS) have identified several loci associated with SA susceptibility, the underlying genes and biological mechanisms remain largely unknown. A cross-tissue transcriptome-wide association study (TWAS) was performed to integrate SA GWAS summary statistics from 410,385 individuals (43,901 cases and 366,484 controls) and gene expression data from 49 distinct tissues and obtained from 838 post-mortem donors. Functional Summary-based Imputation was employed to validate these findings in whole blood tissue. Additionally, candidate susceptibility genes were further verified using Gene Analysis combined with Multi-marker Analysis of Genomic Annotation. Subsequent Mendelian randomization and colocalization analyses were conducted. In the cross-tissue TWAS analysis, 60 susceptibility genes were identified. Two novel susceptibility genes, GPD2 and L3MBTL2, were validated through both single tissue TWAS and MAGMA analysis. Mitochondrial glycerophosphate dehydrogenase (GPD2) may reduce the SA risk by regulating energy metabolism, while Lethal (3) malignant brain tumor-like protein 2 (L3MBTL2) may increase the risk of SA by disturbing DNA damage repair pathway and by regulating the process of the cell cycle. In summary, two novel biological macromolecules were identified in our study whose expression was predicted to be associated with SA risk, providing new insight into the genetic basis of this condition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139841DOI Listing

Publication Analysis

Top Keywords

susceptibility genes
16
novel susceptibility
8
sleep apnea
8
cross-tissue transcriptome-wide
8
transcriptome-wide association
8
association study
8
genes
5
sleep
4
genes sleep
4
apnea revealed
4

Similar Publications

Coding Variants of the Genitourinary Development Gene Carry High Risk for Prostate Cancer.

JCO Precis Oncol

January 2025

Medical Research Service, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN.

Purpose: Considerable genetic heterogeneity is currently thought to underlie hereditary prostate cancer (HPC). Most families meeting criteria for HPC cannot be attributed to currently known pathogenic variants.

Methods: To discover pathogenic variants predisposing to prostate cancer, we conducted a familial case-control association study using both genome-wide single-allele and identity-by-descent analytic approaches.

View Article and Find Full Text PDF

Objective: Aim: To determine the influence of maternal and neonatal variants of the eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) genes and their intergenic interactions on the development of HIE in newborns.

Patients And Methods: Materials and Methods: The study included a cohort of 105 newborns and their 99 mothers. Determination of variants of the genes eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) was carried out for the patients of study groups.

View Article and Find Full Text PDF

Background: The association between bacterial vaginosis (BV) and increased HIV acquisition risk may be related to concentrations of HIV-susceptible immune cells in the cervix.

Methods: Participants (31 with BV and 30 with normal microbiota) underwent cervical biopsy at a single visit. Immune cells were quantified and sorted using flow cytometry (N=55), localization assessed by immunofluorescence (N=16), and function determined by bulk RNA sequencing (RNA-seq) of live CD45+ cells (N=21).

View Article and Find Full Text PDF

Investigation of Genetic Polymorphisms Related GSTM1, GSTT1, GSTP1 Genes and their Association with Radiotherapy Toxicity among Head and Neck Cancer Patients.

Asian Pac J Cancer Prev

January 2025

Department of Molecular Biology & Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.

Background: In this study we explored the association of polymorphisms of glutathione s transferase gene including GSTM1, GSTT1 and GSTP1 with adverse acute normal tissue reactions resulted from radiotherapy in HNC patients. We assessed the association of GSTM1 and GSTT1 null genotypes and Ile105Val of exon-5 and Ala114Val of exon-6 of GSTP1 gene polymorphisms with the risk of acute skin toxicity reactions after therapeutic radiotherapy in HNC patients.

Methods: Four hundred HNC patients administered with Intensity modulated radiation therapy were enrolled in this study for the evaluation of radiotherapy associated toxicity reactions.

View Article and Find Full Text PDF

This study investigated the sexual dimorphism in right ventricle (RV) remodeling in right heart failure susceptible Fischer CDF rats using the pulmonary artery banding (PAB) model. Echocardiography and hemodynamic measurements were performed in adult male and female Fischer CDF rats at 1- or 2-weeks post-PAB. RV systolic pressure and RV hypertrophy were significantly elevated in PAB rats compared to sham control at 1- and 2-weeks post-PAB; however, no differences were observed between male and female rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!