Microarray patches (MAPs) have been employed to deliver therapeutic payloads and for detection purposes. Research has been conducted to develop novel designs in material chemistry and the architecture of microarray, which have opened up the possibility for broader applications of MAPs. However, MAPs have yet to be clinically implemented fully. Addressing the current challenges and maximizing opportunities will pave the way to translate the relevant technologies from bench to bedside.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2025.01.003 | DOI Listing |
Adv Healthc Mater
January 2025
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
This research focuses on developing and characterizing islatravir-loaded dissolving microarray patches (MAPs) to provide an effective, minimally invasive treatment option for human immunodeficiency virus (HIV-1) prevention and treatment. The research involves manufacturing these MAPs using a double-casting approach, and conducting in vitro and in vivo evaluations. Results show that the MAPs have excellent needle fidelity, structural integrity, and mechanical strength.
View Article and Find Full Text PDFN Biotechnol
January 2025
Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, United States. Electronic address:
Microarray patches (MAPs) have been employed to deliver therapeutic payloads and for detection purposes. Research has been conducted to develop novel designs in material chemistry and the architecture of microarray, which have opened up the possibility for broader applications of MAPs. However, MAPs have yet to be clinically implemented fully.
View Article and Find Full Text PDFMol Pharm
January 2025
Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil () has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India. Electronic address:
According to global health metrics, clinical symptoms such as cellulitis and pyoderma associated with skin diseases are a significant burden worldwide, affecting 2.2 million disability-adjusted life years in 2020. There is a strong correlation between the commensal bacteria and the host immune system.
View Article and Find Full Text PDFRev Panam Salud Publica
December 2024
World Health Organization Geneva Switzerland World Health Organization, Geneva, Switzerland.
Measles and rubella have long been recognized as priorities for disease prevention because of their devastating consequences for child health; hence, all World Health Organization (WHO) regions currently have a goal to eliminate measles and four out of six WHO regions have a goal to eliminate rubella. Significant global progress has been made in the twenty-first century, with more than 40% of countries in the world verified by a Regional Verification Commission as having eliminated measles and more than 50% of countries having sustained rubella elimination. Making further progress will require addressing fundamental gaps in health systems, a particular challenge in the current global context where many countries face multiple barriers to both sustaining and achieving measles and rubella elimination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!