Sex-dependent effects of rat maternal immune activation on motor function in offspring of poly I:C treated rats.

Behav Brain Res

Department of Psychology, University of Otago, New Zealand. Electronic address:

Published: January 2025

A majority of people with schizophrenia will experience motor symptoms such as impairments to coordination, balance and motor sequencing. These neurological soft signs are associated with negative social and functional outcomes, and poor disease prognosis. They occur prior to medication exposure, suggesting they are an intrinsic feature of schizophrenia. Despite the need to better understand this dysfunction, relatively few studies have provided a detailed focus on motor capability in animal models of schizophrenia. Here we investigate motor coordination in a rat maternal immune activation (MIA) model of schizophrenia risk. The female and male offspring of Polyinosinic:polycytidylic acid (Poly I:C), and vehicle-treated, pregnant dams were tested in a horizontal ladder rung task using regular and irregular rung configurations. We extracted information about limb positions from video, and measured faults and gait coordination in the task. We found that adult male MIA rats were more likely to slip from the ladder rungs than control animals, and they were more likely to have multiple limbs slip simultaneously. MIA rats also exhibited more variability in stride length, a result that correlated with slips and mirrored disease-related changes in human gait. In contrast, female MIA rats displayed minimal alterations in motor performance. Our findings show that the ladder task uncovers sex-dependent effects on motor coordination in MIA rats and highlights the potential usefulness of the MIA model for investigating motor dysfunction in an animal model of schizophrenia risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2025.115431DOI Listing

Publication Analysis

Top Keywords

mia rats
16
sex-dependent effects
8
rat maternal
8
maternal immune
8
immune activation
8
motor
8
motor coordination
8
mia model
8
model schizophrenia
8
schizophrenia risk
8

Similar Publications

A majority of people with schizophrenia will experience motor symptoms such as impairments to coordination, balance and motor sequencing. These neurological soft signs are associated with negative social and functional outcomes, and poor disease prognosis. They occur prior to medication exposure, suggesting they are an intrinsic feature of schizophrenia.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.

View Article and Find Full Text PDF

Objectives: Histological osteochondral characteristics of inflammation, fibrosis, vascularity, cartilage islands, vessels entering cartilage, thickened trabeculae and cysts are associated with bone marrow lesions (BMLs) in human knee osteoarthritis (OA). We identified and developed a method for scoring comparable pathology in two rat OA knee pain models.

Methods: Rats (n ​= ​8-10 per group) were injected with monoiodoacetate (MIA) or saline, or underwent meniscal transection (MNX) or sham surgery.

View Article and Find Full Text PDF

This study aims to observe the effects of different doses of Astragali Radix on the expression of glucagon(GLP-1) in se-rum and glucagon receptor(GLP-1R) in cartilage tissue in rats with knee osteoarthritis(KOA), explore the effect of Astragali Radix on the inflammation and apoptosis of KOA by regulating GLP-1/GLP-1R signaling axis, and investigate the mechanism of its action in alleviating KOA. Forty-eight male SD rats were randomly divided into six groups: blank group, model group, low-, medium-, and high-dose Astragali Radix groups(3.125, 6.

View Article and Find Full Text PDF

Validity evaluation of a rat model of monoiodoacetate-induced osteoarthritis with clinically effective drugs.

BMC Musculoskelet Disord

November 2024

Central Research Laboratory, Research & Development Division, Seikagaku Corporation, Tateno 3-1253, Higashiyamato-shi, Tokyo, 207-0021, Japan.

Background: Knee osteoarthritis (KOA) is the most common type of joint disease in elderly people and is characterized by pain and dysfunction. Although the monoiodoacetate (MIA)-induced model is widely used as a rodent KOA model, it is important to acknowledge the inherent limitations of this model, as the MIA model develops complex pathological phases on a daily basis. An accurate understanding of this model and the selection of an appropriate time point according to the target for drug candidates can lead to the development of clinically effective drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!