Lipid droplet targeting of the lipase co-activator ABHD5 and the fatty liver disease-causing variant PNPLA3 I148M is required to promote liver steatosis.

J Biol Chem

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202. Electronic address:

Published: January 2025

The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). We previously demonstrated that ABHD5 interacted with PNPLA3, a closely related family member to PNPLA2. Importantly, a common missense variant in PNPLA3 (I148M) is the greatest genetic risk factor for MASLD. PNPLA3 148M functions to sequester ABHD5 and prevent co-activation of PNPLA2, which has implications for initiating MASLD; however, the exact mechanisms involved are not understood. Here we demonstrate that LD targeting of both ABHD5 and PNPLA3 I148M is required for the interaction. Molecular modeling demonstrates important resides in the C-terminus of PNPLA3 for LD binding and fluorescence cross-correlation spectroscopy demonstrates that PNPLA3 I148M greater associates with ABHD5 than WT PNPLA3. Moreover, the C-terminus of PNPLA3 is sufficient for functional targeting of PNPLAs to LD and the interaction with ABHD5. In addition, ABHD5 is a general binding partner of LD-bound PNPLAs. Finally, PNPLA3 I148M targeting to LD is required to promote steatosis in vitro and in the liver. Overall results suggest that the interaction of PNPLA3 I148M with ABHD5 on LD is required to promote liver steatosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbc.2025.108186DOI Listing

Publication Analysis

Top Keywords

pnpla3 i148m
24
required promote
12
pnpla3
11
abhd5
9
variant pnpla3
8
i148m required
8
promote liver
8
liver steatosis
8
tag hydrolysis
8
abhd5 pnpla3
8

Similar Publications

Lipid droplet targeting of the lipase co-activator ABHD5 and the fatty liver disease-causing variant PNPLA3 I148M is required to promote liver steatosis.

J Biol Chem

January 2025

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA 48202. Electronic address:

The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).

View Article and Find Full Text PDF

Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.

View Article and Find Full Text PDF

Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs.

Life Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:

Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.

Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.

View Article and Find Full Text PDF

JNJ-75220795 or ARO-PNPLA3 is an investigational small interfering ribonucleic acid agent conjugated with N-acetyl-d-galactosamine that targets the PNPLA3 gene, currently being developed for metabolic dysfunction-associated steatohepatitis (MASH). This study evaluated the pharmacokinetics (PK) profile of single subcutaneous doses of JNJ-75220795 in preclinical species as well as in human subjects with homozygous or heterozygous PNPLA3 I148M mutation in two phase 1 studies-a first-in-human study in the United States and a first-in-Japanese study in Japan. Preclinical PK in rats and non-human primates (NHP) showed a rapid systemic absorption and elimination following single subcutaneous doses.

View Article and Find Full Text PDF

Lipid droplet targeting of ABHD5 and PNPLA3 I148M is required to promote liver steatosis.

bioRxiv

November 2024

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202.

The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!