Daphnane diterpenoids, as one of the representative types of diterpenoid compounds with rich structural diversity and significant biological activities, have an uncommon 5/7/6 tricyclic skeleton mainly found in species of Thymelaeaceae and Euphorbiaceae families. Due to the unique peculiarity of the framework and remarkable pharmacological activities, over the past three decades, novel structures have been continuously discovered and more structural subtypes have been derived. However, there is always a lack of a unified and convincing structural classification strategy for the summary of daphnane diterpenoids, which affects the in-depth and systematic research of pharmaceutical chemists and pharmacologists. In addition, the distinctive skeleton, continuous chiral centers, and prominent bioactivities of daphnane diterpenoids have attracted widespread interest among synthetic chemists. However, there are currently only a few reports of complete synthesis of compounds with low overall yields. Given the broad attention paid to daphnane diterpenoids in recent years, this review summarized the sources, structural classification, biological activities, and synthesis of around 300 natural daphnane diterpenoids discovered from 1993 to 2023, providing a reference for further discovery of novel structures, chemical and biological synthesis, and drug research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2024.114376 | DOI Listing |
Phytochemistry
January 2025
Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China. Electronic address:
Daphnane diterpenoids, as one of the representative types of diterpenoid compounds with rich structural diversity and significant biological activities, have an uncommon 5/7/6 tricyclic skeleton mainly found in species of Thymelaeaceae and Euphorbiaceae families. Due to the unique peculiarity of the framework and remarkable pharmacological activities, over the past three decades, novel structures have been continuously discovered and more structural subtypes have been derived. However, there is always a lack of a unified and convincing structural classification strategy for the summary of daphnane diterpenoids, which affects the in-depth and systematic research of pharmaceutical chemists and pharmacologists.
View Article and Find Full Text PDFFitoterapia
January 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China. Electronic address:
Daphnane diterpenoids occurring in plants of the Thymelaeaceae are the focus of natural product drug discovery because of the wide range of their therapeutically biological activities. Considering the limited occurrence in some plants of the Thymelaeaceae, it is imperative to design a strategy for the target isolation of daphnane diterpenoids. In this study, a strategy was developed to filter the data using MZmine, generate the molecular network using the Global Natural Product Social Molecular Network Platform (GNPS), and determine the retention time of target compounds using MS-DIAL.
View Article and Find Full Text PDFPhytochem Anal
December 2024
Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan.
Introduction: Liquid chromatography-mass spectrometry (LC-MS) has enhanced the rapid, accurate analysis of complex plant extracts, eliminating the need for extensive isolation. Tandem mass spectrometry (MS/MS) further enhances this process by providing detailed structural information. However, differentiating structural isomers remains a challenge due to their minor spectral and structural differences.
View Article and Find Full Text PDFPhytochemistry
April 2025
Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan. Electronic address:
J Pharm Biomed Anal
March 2025
UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France. Electronic address:
Hura crepitans (Euphorbiaceae), is widespread in the Amazon rainforest and on plantations in sub-Saharan Africa. This tree produces an irritating milky latex rich in secondary metabolites, notably daphnane-type diterpenes and cerebrosides. Previous studies have shown that huratoxin, the main daphnane in the latex, significantly and selectively inhibited the growth of colorectal cancer cells through a unique mechanism involving the activation of PKCζ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!