Optimizing low-temperature CO oxidation under realistic combustion conditions: The impact of CeO morphology on Au/CeO catalysts.

J Hazard Mater

State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China; Suzhou Key Laboratory for Urban Public Safety, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, PR China. Electronic address:

Published: January 2025

The development of carbon monoxide oxidation catalysts for complex gas environments faces significant challenges in fire scenarios. Only a few representative gases are used as interfering components in simulated real smoke under laboratory conditions, which cannot accurately reflect the performance of catalysts in a real fire. Herein, Au/CeO catalysts with high activity were prepared by adjusting the morphology (rod, cube, polyhedron and irregular particles) and exposed crystal surface ratio of CeO. Rod-like Au/CeO (Au/CeO-NR) achieved 99 % CO conversion at 25 °C and demonstrated excellent water resistance. This excellent activity originates from the high oxygen vacancy concentration of the CeO-NR and the interaction between Au species and the carrier. A testbed was established by connecting a steady-state tube furnace with a catalytic fixed-bed reactor to evaluate the CO elimination performance of the catalyst under realistic combustion conditions. Despite competitive adsorption of small molecules (HO, acetone, etc.) on the active sites, Au/CeO-NR eliminates carbon monoxide in real combustion atmospheres at only 60 °C. This study provides a method for evaluating the catalytic activity of CO in realistic environments, which is promising for practical use in application scenarios dealing with toxic fumes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137182DOI Listing

Publication Analysis

Top Keywords

realistic combustion
8
combustion conditions
8
au/ceo catalysts
8
carbon monoxide
8
optimizing low-temperature
4
low-temperature oxidation
4
oxidation realistic
4
conditions impact
4
impact ceo
4
ceo morphology
4

Similar Publications

Optimizing low-temperature CO oxidation under realistic combustion conditions: The impact of CeO morphology on Au/CeO catalysts.

J Hazard Mater

January 2025

State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China; Suzhou Key Laboratory for Urban Public Safety, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, PR China. Electronic address:

The development of carbon monoxide oxidation catalysts for complex gas environments faces significant challenges in fire scenarios. Only a few representative gases are used as interfering components in simulated real smoke under laboratory conditions, which cannot accurately reflect the performance of catalysts in a real fire. Herein, Au/CeO catalysts with high activity were prepared by adjusting the morphology (rod, cube, polyhedron and irregular particles) and exposed crystal surface ratio of CeO.

View Article and Find Full Text PDF

Purification and Value-Added Conversion of NO under Ambient Conditions with Photo-/Electrocatalysis Technology.

Environ Sci Technol

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.

View Article and Find Full Text PDF

Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics.

View Article and Find Full Text PDF

We report the results of a zinc oxide (ZnO) low-power microsensor for sub-ppm detection of NO and HS in air at 200 °C. NO emission is predominantly produced by the combustion processes of fossil fuels, while coal-fired power plants are the main emitter of HS. Fossil fuels (oil, natural gas, and coal) combined contained 74% of USA energy production in 2023.

View Article and Find Full Text PDF

Unintended side effect of the coal-to-gas policy in North China Plain: Migration of the sources and health risks of ambient PAHs.

Sci Total Environ

January 2025

Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China. Electronic address:

Ongoing coal-to-gas (CTG) largely cut down both coal consumption and associated PM. However, a knowledge gap still existed in CTG impacts on the other energy and organic pollutant emissions. Coupling on-site investigation with statistical yearbooks, we provided a more realistic energy evolutions before (BCTG), during (DCTG), and after (ACTG) the CTG for Hebei Province.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!