Phosphoproteins maintain the normal metabolic activity of the organisms. Direct phosphopeptides detection is difficult to be realized by mass spectroscopy (MS) due to the low ionization efficiency, low abundance of phosphopeptides and interferences of complicated biological fluids. In the present work, a magnetic composite material was prepared by combining polyethyleneimine (PEI) and fluorescein isothiocyanate (FITC) focusing on phosphopeptides enrichment. Fourier-transform infrared spectroscopy, thermogravimetry analysis, X-ray photoemission spectroscopy, X-ray diffraction and UV-vis spectrometry measurement results confirmed the successful synthesis of FeO@PEI@FITC material. FITC was facilely connected with PEI, and the two motifs endowed the efficient enrichment capacity of phosphopeptides by simple regulation of pH. The FeO@PEI@FITC material was applied to the detection of phosphopeptides from real samples, implying that it can serve as an applicable platform for phosphoproteomics analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2025.465679 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China. Electronic address:
Food safety problem caused by aflatoxins (AFs) has become a major concern worldwide. However, due to the complexity of food matrices and the low concentration of analytes, the accurate and sensitive determination of AFs and their precursors in the biosynthetic pathway is extremely challenging, so the development of efficient sample preparation techniques has been urgently required. This paper reviews the recent advances in sample preparation based on some emerging extraction media for the determination of AFs and their precursors in different food samples, including ionic liquids (ILs) and IL-based composites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).
View Article and Find Full Text PDFAcc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFSci Rep
January 2025
College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, 445000, China.
This paper addresses the low level of intelligence in tea processing equipment in Enshi Prefecture by designing an intelligent withering control system based on the STMicroelectronics 32-bit Microcontroller (STM32). This control system can achieve real-time monitoring of the withering environment and automate the control of heating and ventilation dehumidification modules. By integrating IoT technology, relevant users can view the tea production process via mobile devices, enabling intelligent and remote production operations.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!