Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system. The results revealed that Sb toxicity severely impaired rice growth, reducing shoot biomass by 38.3%, shoot and root length by 38.9% and 23.2%, and leaf relative water content by 15.5%. Supplementation with 30 μM B mitigated these adverse effects by enhancing photosynthesis and chlorophyll synthesis, restoring root activity, and improving oxidative balance through increased antioxidant enzyme activities in rice tissues. Furthermore, B supplementation significantly reduced Sb concentration in roots by 56.28%, while promoting Sb distribution in the cell wall (CW) fraction. Scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDS) microanalysis confirmed that B enhanced Sb adsorption on root CWs. Fourier transform infrared spectroscopy (FTIR) analysis indicated increased carboxyl groups in the CWs following B application under Sb treatment. Moreover, B supplementation increased the levels of pectin and hemicellulose and elevated pectin methylesterase (PME) activity by 22.0%, 69.0%, and 29.0% in roots, respectively, thus promoting Sb chelation onto the CWs. Taken together, our results provide a scientific basis and theoretical guidance for applying B to alleviate Sb toxicity in crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124100DOI Listing

Publication Analysis

Top Keywords

cell wall
12
rice
5
boron contributes
4
contributes enhance
4
enhance antimony
4
antimony tolerance
4
tolerance rice
4
rice oryza
4
oryza sativa
4
sativa activating
4

Similar Publications

Introduction: Decreased left atrial appendage emptying velocity (LAAV) is a marker for thrombus formation. This study evaluates the association between LAAV and inflammatory indices in non-valvular atrial fibrillation (AF) patients.

Methods: The study population was 1428 patients with AF, 875 of whom enrolled.

View Article and Find Full Text PDF

Swine are increasingly utilized in cardiovascular research due to their anatomical and physiological similarities to humans, particularly for studying diastolic dysfunction. While MRI offers excellent structural imaging, echocardiography provides superior real-time assessment of diastolic parameters. To address the lack of standardized methods and reduce variability across studies, we present a comprehensive guide for performing echocardiography in Yorkshire pigs, detailing anatomical considerations, equipment requirements, and technical approaches.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

Objective: Laparoscopic nephron sparing surgery (NSS) can be performed by mainly 2 methods, offclamp or on-clamp. Continuous bleeding during the off-clamp method may impair the clear visualization of the border between the tumor and parenchyma, even though it is done safely in experienced hands. Therefore, some surgical modifications may be needed during mass excision and renorraphy.

View Article and Find Full Text PDF

Boron deficiency is an abiotic stress that negatively impacts plant growth and yield worldwide. Boron deficiency primarily affects the development of plant meristems, groups of stem cells critical for all postembryonic tissue growth. The link between boron and meristem development was first established in 1923, when boron's essentiality was discovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!