Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model. CGS21680 restored neurite outgrowth, the number of SYN1/MAP2 puncta pairs, genes related to the BDNF-TrkB signaling pathway (Bdnf, TrkB, and Mtor) and neural development (Tuj1 and Syn1), and electrophysiological functions in in vitro RTT primary neurons. Additionally, CGS21680 alleviated neurobehavioral impairments and modulated gene expression in an RTT in vivo model. Our findings suggest that activation of AR via CGS21680 enhances BDNF-TrkB signaling, which in turn activates downstream pathways, ultimately increasing neurite outgrowth and synaptic plasticity, and restoring neurobehavioral clinical symptoms. This is the first study to report the therapeutic effect of CGS21680 in R106W point mutation RTT models, both in vitro and in vivo. These research results suggest that CGS21680 could be a promising therapeutic candidate for the treatment of RTT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2025.117821DOI Listing

Publication Analysis

Top Keywords

rett syndrome
8
downstream pathways
8
vitro vivo
8
neurite outgrowth
8
bdnf-trkb signaling
8
cgs21680
7
therapeutic
6
rtt
6
therapeutic effects
4
effects cgs21680
4

Similar Publications

Therapeutic effects of CGS21680, a selective A receptor agonist, via BDNF-related pathways in R106W mutation Rett syndrome model.

Biomed Pharmacother

January 2025

College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.

View Article and Find Full Text PDF

Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).

Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.

Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.

View Article and Find Full Text PDF

: duplication syndrome (MDS) (MIM#300260) is a rare X-linked neurodevelopmental disorder. This study aims to (1) develop a specific clinical severity scale, (2) explore its correlation with clinical and molecular variables, and (3) automate diagnosis using the Face2gene platform. : A retrospective study was conducted on genetically confirmed MDS patients who were evaluated at a pediatric hospital between 2012 and 2024.

View Article and Find Full Text PDF

DDX3X syndrome is often misdiagnosed as autism spectrum disorder (ASD, Rett Syndrome, and Dandy-Walker Syndrome). Precise phenotyping is needed with reference to neurodevelopmental diagnosis. Observation of behavior and communication in parents with DDX3X syndrome in the USA, France, and Poland; conversations with the parents of patients; and rudimentary information in evidence-based medical articles prompted us to identify differences in communication, play, and social interaction between children with ASD only, those with both ASD and , and those with only.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!