Intravenously administered nanoparticles (NPs) often bind with plasma proteins, forming the protein corona that promotes rapid systemic clearance, a primary challenge in nanomedicine. In this study, we developed a pH- and GSH-sensitive "stealth" nanodelivery system, PTX@NPs-aPD1-IL, for sequential drug release. By using a biocompatible choline-based ionic liquid (IL) as the coating for NPs, the interaction and adsorption of NPs with serum proteins were reduced, achieving targeted delivery to the lung organ and increasing drug accumulation. In the weakly acidic extracellular tumor microenvironment (pH 6.5), the anti-PD-1 antibody (aPD-1) was first released to block the PD-1/PD-L1 pathway and restore the immunocidal function of T cells. In the highly reductive intracellular environment of tumor cells, the disulfide bonds were cleaved, causing NPs to rupture and release paclitaxel (PTX). It induced tumor cell apoptosis and triggered immunogenic cell death (ICD), promoted dendritic cells (DCs) maturation and activated T cells for chemo-immunotherapy. In the mouse orthotopic lung cancer model, PTX@NPs-aPD1-IL exhibited superior efficacy to other treatment groups at the same dose. This was due to the significantly increase in the release of immune factors, including TNF-α and IFN-γ, and the promotion of CD8 T cells recruitment, which induced a stronger immune response, and thus enhanced the anti-lung cancer effect. In summary, PTX@NPs-aPD1-IL provided a promising strategy for effective chemo-immunotherapy for lung cancer through sequential release profile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2025.117273 | DOI Listing |
Eur J Surg Oncol
December 2024
Department of Surgery, Tokyo Medical University, Japan.
Objective: Pulmonary pleomorphic carcinoma is a relatively rare and aggressive subtype of non-small cell lung cancer (NSCLC), with a poor prognosis and early recurrence, and is resistant to conventional therapies. This study investigated the efficacy of immune checkpoint inhibitors (ICIs) in improving the survival outcomes of patients with pulmonary pleomorphic carcinoma with postoperative recurrence.
Methods: We conducted a retrospective analysis of 71 patients with pulmonary pleomorphic carcinoma who underwent pulmonary resection at Tokyo Medical University Hospital between 2008 and 2022.
J Interferon Cytokine Res
January 2025
Gansu University of Traditional Chinese Medicine, Lanzhou, China.
Interferon-gamma (IFN-γ) is an important cytokine associated with antitumor immunity and has been implicated in the pathogenesis and progression of lung cancer. Nevertheless, no bibliometric analyses have been published in this field to date, and thus we aim to address this gap in knowledge. A search of the Web of Science (WOS) for literature related to the treatment of lung cancer with IFN-γ was conducted from 2002 to 2024.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.
Background: Immune checkpoint inhibitors (ICIs) are currently the primary approach for managing NSCLC. However, numerous combination therapies are currently under investigation. Our goal is to investigate the overall efficacy and safety of ICIs and taxane-based chemotherapy.
View Article and Find Full Text PDFPLoS One
January 2025
QUT Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia.
Background: Spatial data are often aggregated by area to protect the confidentiality of individuals and aid the calculation of pertinent risks and rates. However, the analysis of spatially aggregated data is susceptible to the modifiable areal unit problem (MAUP), which arises when inference varies with boundary or aggregation changes. While the impact of the MAUP has been examined previously, typically these studies have focused on well-populated areas.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!