With rapid, energy-intensive, and coal-fueled economic growth, global air quality is deteriorating, and particulate matter pollution has emerged as one of the major public health problems worldwide. It is extremely urgent to achieve carbon emission reduction and air pollution prevention and control, aiming at the common problem of weak and unstable signals of characteristic elements in the application of laser-induced breakdown spectroscopy (LIBS) technology for trace element detection. In this study, the influence of the optical fiber collimation signal enhancement method on the LIBS signal was explored. Then, the influence of the LIBS signal enhancement system based on an optical fiber collimated system on LIBS spectral signal intensity and signal-to-noise ratio (SNR) was compared, and the influences of different spectral preprocessing methods and different variable selection methods on the prediction performance of the random forest (RF) calibration model were investigated. Finally, the Savitzky-Golay convolution derivative (SG)-variable importance projection (VIP)-mutual information (MI)-RF (Zn), first-order derivative (D1st)-variable importance measurement (VIM)-successive projections algorithm (SPA)-RF (Cu), and D1st-VIM-MI-RF (Ni) optimal models were constructed according to the optimal spectral preprocessing method and the optimal hybrid variable selection method. The prediction performances of their optimal RF model after SG-VIP-MI (Zn), D1st-VIM-SPA (Cu), and D1st-VIM-MI (Ni) spectral preprocessing and hybrid variable selection method are presented as follows: Zn ( = 0.9860; MREP = 0.0590), Cu ( = 0.9817; MREP = 0.0405), and Ni ( = 0.9856; MREP = 0.0875). The above results demonstrate that the RF calibration model based on the optical fiber collimated LIBS signal enhancement method, the optimal spectral preprocessing method, and variable selection strategy overcome the key problems of low SNR and low quantitative accuracy in single particle detection. It is expected to provide a theoretical basis and technical support for in situ online rapid monitoring of particulate matter.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c05221DOI Listing

Publication Analysis

Top Keywords

signal enhancement
16
optical fiber
16
spectral preprocessing
16
variable selection
16
fiber collimated
12
libs signal
12
single particle
8
laser-induced breakdown
8
breakdown spectroscopy
8
collimated system
8

Similar Publications

Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.

Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.

View Article and Find Full Text PDF

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

With rapid, energy-intensive, and coal-fueled economic growth, global air quality is deteriorating, and particulate matter pollution has emerged as one of the major public health problems worldwide. It is extremely urgent to achieve carbon emission reduction and air pollution prevention and control, aiming at the common problem of weak and unstable signals of characteristic elements in the application of laser-induced breakdown spectroscopy (LIBS) technology for trace element detection. In this study, the influence of the optical fiber collimation signal enhancement method on the LIBS signal was explored.

View Article and Find Full Text PDF

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!