Latency in flux observation has an adverse effect on the performance of observer-based field-oriented speed control for three-phase induction motor (IM). The reduction of the convergent rate of estimation errors could improve the performance of speed-controlled IM based on flux observers. The main contribution is to design a fast convergent flux observer, which provides bounded estimation error immediately after one instant of motor startup. The proposed flux observer fused barrier function adaptive mechanism with integral sliding mode control principle to yield BFISMO. Rigorous stability analysis has been conducted to achieve global flux estimation error ultimate boundedness. Moreover, three controllers have been designed. The first control design is devoted to flux control based on a backstepping controller, while the other two controllers' design is dedicated to rotor speed control of the motor. The speed controller is developed by combining the backstepping control with disturbance observers to estimate the unmatched load torque named quasi-sliding mode observer (QSMDO), and nonlinear disturbance observer (NLDO). Based on numerical simulations, the performance and efficacy of the proposed BFISMO have been assessed by conducting a comparison study to other observer techniques. The results showed the superiority of the proposed observer over the conventional versions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202420240539 | DOI Listing |
J Agric Food Chem
January 2025
Yibin Academy of Southwest University, Yibin 644000, China.
Consumer concerns regarding food nutrition and quality are becoming increasingly prevalent. High-resolution mass spectrometry (HRMS)-based metabolomics stands as a cutting-edge and widely embraced technique in the realm of food component analysis and detection. It boasts the capability to identify character metabolites at exceedingly low abundances, which remain undetectable by conventional platforms.
View Article and Find Full Text PDFBiochemistry
January 2025
BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.
Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Institute of Ecology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
Ecosystem changes can simultaneously generate various climate-related effects, such as evapotranspiration (vapor flux) effects, carbon-cycle effects, and surface temperature effects. These effects are coupled with one another because they are generated through the same biophysical and biogeochemical processes. Consequently, given an easily measurable effect, other effects can be predicted from the measured effect.
View Article and Find Full Text PDFLife Metab
October 2024
CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China.
Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls.
View Article and Find Full Text PDFIn the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!