The energy-exergy and environ-economic (4E) analysis was conducted on a solar still with and without a hybrid thermal energy storage system (TESS) and a solar air heater. The proposed solar still was modified by integrating a rectangular aluminium box filled with paraffin wax and black gravel as the TESS and coupled with a solar air heater. Paraffin wax was selected due to its widespread availability and proven effectiveness in accelerating desalination, improving process uniformity, and maintaining optimal temperature levels. Throughout the experiments, meticulous data on mass loss, air velocity, and temperature were recorded for both conditions. The daily energy efficiency varies from 40.80% to 31.72%, showing a reduction rate with increased water depth. Estimates were made on the average exergy efficiency, losses, outflow, and inflow for the solar still. These were done for both setups. The analysis revealed that CO2 mitigation and credit were more favorable with the TESS. Furthermore, the Energy Payback Time (EPBT) for the hybrid heat storage-based single-slope solar still coupled with a solar air heater is 1.87 years. On the other hand, EPBT values for the hybrid heat storage single-slope solar still and the conventional single-slope solar still were 1.65 years and 0.95 years, respectively. Integrating a thermal energy storage system and solar air heater significantly improved the performance and sustainability of the solar still for desalination, making it a more efficient and environmentally friendly option for freshwater production.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314036PLOS

Publication Analysis

Top Keywords

solar air
20
air heater
20
single-slope solar
16
solar
13
energy-exergy environ-economic
8
environ-economic analysis
8
heat storage-based
8
storage-based single-slope
8
thermal energy
8
energy storage
8

Similar Publications

Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.

View Article and Find Full Text PDF

The energy-exergy and environ-economic (4E) analysis was conducted on a solar still with and without a hybrid thermal energy storage system (TESS) and a solar air heater. The proposed solar still was modified by integrating a rectangular aluminium box filled with paraffin wax and black gravel as the TESS and coupled with a solar air heater. Paraffin wax was selected due to its widespread availability and proven effectiveness in accelerating desalination, improving process uniformity, and maintaining optimal temperature levels.

View Article and Find Full Text PDF

Synergetic Interface and Bulk Defects Modification with Identical Organic Molecule for Efficient Inverted Perovskite Solar Cells.

ACS Appl Mater Interfaces

January 2025

Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.

Recent progress in inverted perovskite solar cells (IPSCs) mainly focused on NiO modification and perovskite (PVK) regulation to enhance efficiency and stability. However, most works address only monofunctional modifications, and identical molecules with the ability to simultaneously optimize NiO interface and perovskite bulk phase have been rarely reported. This work proposes a dual modification approach using 4-amino-3,5-dichlorobenzotrifluoride (DCTM) to optimize both NiO upper interfaces and reduction of bulk defects in perovskite.

View Article and Find Full Text PDF

Enhancing Flexible Perovskite Photovoltaic Cells and Modules Through Light-Trapping and Light-Shifting Strategies.

Small Methods

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong, 510632, China.

Flexible perovskite photovoltaic devices are typically constructed on flexible polyethylene naphthalate (PEN) substrates, which exhibit near-ultraviolet absorption and high visible-light reflection, leading to significant optical losses. To address this issue, a reusable optical-management sticker tailored for flexible substrates has been proposed in this work. The sticker incorporates a light-shifting material that converts near-ultraviolet light into visible light, enabling photoelectric conversion of near-ultraviolet light.

View Article and Find Full Text PDF

From synthesis to application: a review of BaZrS chalcogenide perovskites.

Nanoscale

January 2025

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Chalcogenide perovskites are gaining prominence as earth-abundant and non-toxic solar absorber materials, crystallizing in a distorted perovskite structure. Among these, BaZrS has attracted the most attention due to its optimal bandgap and its ability to be synthesized at relatively low temperatures. BaZrS exhibits a high light absorption coefficient, excellent stability under exposure to air, moisture, and heat, and is composed of earth-abundant elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!