Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock. To identify genomic imprinting in pigs, we generated parthenogenetic porcine embryos alongside biparental normal embryos, and then performed whole-genome bisulfite sequencing and RNA sequencing on these samples. In our analyses, we discovered a maternally methylated differentially methylated region within the orthologous ZNF791 locus in pigs. Additionally, we identified both a major imprinted isoform of the ZNF791-like gene and an unannotated antisense transcript that has not been previously annotated. Importantly, our comparative analyses of the orthologous ZNF791 gene in various eutherian mammals, including humans, non-human primates, rodents, artiodactyls, and dogs, revealed that this gene is subjected to genomic imprinting exclusively in domesticated animals, thereby highlighting lineage-specific imprinting. Furthermore, we explored the potential mechanisms behind the establishment of maternal DNA methylation imprints in porcine and bovine oocytes, supporting the notion that integration of transposable elements, active transcription, and histone modification may collectively contribute to the methylation of embedded intragenic CpG island promoters. Our findings convey fundamental insights into molecular and evolutionary aspects of livestock species-specific genomic imprinting and provide critical agricultural implications.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1011532DOI Listing

Publication Analysis

Top Keywords

genomic imprinting
24
znf791 locus
8
domesticated animals
8
imprinted genes
8
orthologous znf791
8
imprinting
7
genomic
6
evolutionary lineage-specific
4
lineage-specific genomic
4
imprinting znf791
4

Similar Publications

Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.

View Article and Find Full Text PDF

Genetics of Prader-Willi and Angelman syndromes: 2024 update.

Curr Opin Psychiatry

December 2024

Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.

Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.

Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.

View Article and Find Full Text PDF

Commentary on "Epigenome-wide analysis across the development span of pediatric acute lymphoblastic leukemia: backtracking to birth".

Mol Cancer

January 2025

Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

VTRNA2-1 is a polymorphically imprinted locus. The proportion of individuals with a maternally imprinted VTRNA2-1 locus is consistently approximately 75% in populations of European origin, with the remaining circa 25% having a non-methylated VTRNA2-1 locus. Recently, VTRNA2-1 hypermethylation at birth was suggested to be a precursor of paediatric acute lymphoblastic leukaemia with biomarker potential.

View Article and Find Full Text PDF

Profiling Genome-Wide Methylation Patterns in Cattle Infected with .

Int J Mol Sci

December 2024

Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.

DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.

View Article and Find Full Text PDF

Background: A subset of developmental disorders (DD) is characterized by disease-specific genome-wide methylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episignature requires the use of indirect methylation profiling methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!