Circularly Polarized Light (CPL)-dependent anomalous photovoltaic effect (APVE), characterized by light helicity-manipulated steady photocurrent and above-bandgap photovoltage, has demonstrated significant potential in the fields of photoelectronic and photovoltaics. However, exploiting CPL-dependent APVE in chiral hybrid perovskites, a promising family with intrinsic chiroptical activity and non-centrosymmetric structure, remains challenging. Here, leveraging the flexible structural design of chiral alternating cations intercalation-type perovskites, CPL-dependent APV, for the first time, is achieved in chiral perovskites. Specifically, by introducing lone pair electrons into the organic layers to greatly amplify the polarization, [(R)-PPA](MOPA)PbBr (2-R) (PPA = 1-phenylpropylammonium, MOPA = 3-methoxypropylammonium) exhibit intrinsic APVE with an above-bandgap photovoltage of 6.50 V (E = 3.01 eV) under ultraviolet (UV) light illumination. Strikingly, profiting from the natural chiral optical activity of chiral perovskites, unprecedented UV CPL-dependent APV is realized in 2-R, driving the high distinguishability between right-hand and left-hand CPLs with a large anisotropy factor (g) of 0.33. This study pioneers the realization of CPL-dependent APV within chiral perovskite, promising significant advancements in optoelectronic device technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202412506DOI Listing

Publication Analysis

Top Keywords

cpl-dependent apv
12
circularly polarized
8
chiral hybrid
8
hybrid perovskites
8
above-bandgap photovoltage
8
chiral perovskites
8
chiral
7
perovskites
5
cpl-dependent
5
unprecedented ultraviolet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!