Particle filtration efficiency (PFE) is a critical property of face masks, with the most common test methods using sodium chloride as a challenge aerosol. In the absence of bottom-up uncertainty budgets for PFE, interlaboratory comparisons provide an alternative route to robustly quantify the precision and bias of the method. This work presents the results of several interlaboratory comparisons of particle filtration efficiency performed across a network of laboratories. Using log-penetration as a surrogate for PFE, it is shown that expanded reproducibility intervals were consistent across most samples, at around 26% of the nominal value of log-penetration. Between-laboratory contributions to this reproducibility were significant, nearly doubling the lab-reported uncertainties in most instances and emphasizing the need for ongoing interlaboratory studies to be performed for particle filtration. More work is required to identify the causes of these between-laboratory differences, requiring dedicated testing. Alongside uncertainty quantification, testing materials across a range of variables (such as the number of layers, amount of charge on the material, and basis weight) affirm that constant quality is a good approximation when layering or changing the basis weight on an otherwise identical material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15459624.2024.2447321 | DOI Listing |
J Occup Environ Hyg
January 2025
Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
Particle filtration efficiency (PFE) is a critical property of face masks, with the most common test methods using sodium chloride as a challenge aerosol. In the absence of bottom-up uncertainty budgets for PFE, interlaboratory comparisons provide an alternative route to robustly quantify the precision and bias of the method. This work presents the results of several interlaboratory comparisons of particle filtration efficiency performed across a network of laboratories.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent.
View Article and Find Full Text PDFiScience
January 2025
Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
While various methods are employed to ensure the virus safety of finished products, virus filtration (VF) stands out as the preferred method for virus removal and purification of a wide variety of products owing to its capability of separating product molecules with more than 90% recovery and no change in molecule characteristics. The modeling of the virus removal process for VF membranes is based on the principles of microfiltration (MF) and ultrafiltration (UF), but with modifications for the much narrower separation difference, which is less than 2-fold for the separation of product molecules and virus particles. In this review, we introduce the materials and application of VF highlighting the unique characteristics properties of VF membranes through the steps of invention and subsequent development.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
WEISS Centre, University College London, UK.
Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.
Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.
Eng Life Sci
January 2025
Lab Essentials Applications Development Sartorius Göttingen Germany.
The demand for lentiviral vectors (LVs) as tools for ex vivo gene therapies is ever-increasing. Despite their promising applications, challenges in LV production remain largely due to the fragile envelope, which challenges the maintenance of vector stability. Thus, downstream processing optimization to enhance efficiency, yield, and product quality is necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!