The compliant nature of cerebral blood vessels may represent an important mechanical protection for sustained cerebral perfusion during reductions in arterial blood pressure (ABP). However, whether the rise in cerebrovascular compliance (Ci) with falling ABP persists and exhibits a threshold effect remains unknown. Therefore, we analyzed Ci changes during graded head-up tilt (HUT) in individuals with autonomic failure (AF), a group that tolerates graded and progressive reductions in ABP. Finger ABP and middle cerebral artery blood velocity (MCAv) were recorded from five AF patients (61 ± 22 years) at supine rest and during graded-HUT. Tilt gradients increased incrementally between 30, 45, and 60 degrees every 5 minutes until ABP reached a critically low value. The total time in HUT was 11 ± 4 min. Every 5 s during supine and HUT individual ABP and MCAv waveforms were assessed for Ci and cerebrovascular resistance (CVR) using a modified Windkessel model. Pulse pressure (PP) was calculated as systolic ABP - diastolic ABP. A threshold value for the increase in Ci was determined using breakpoint analysis of the linear relationship between changes in Ci and PP or ABP across tilt periods. Graded HUT resulted in reduced ABP, PP, CVR, and mean MCAv, and increased Ci (all P < 0.01). Ci began to increase progressively after PP fell by 22 ± 6 mmHg and ABP fell by 20 ± 11 mmHg. In conclusion, the increase in Ci during progressive hypotension exhibited a threshold effect and persisted as ABP continued to fall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00900.2024 | DOI Listing |
J Appl Physiol (1985)
January 2025
School of Kinesiology, Western University, London, Ontario, Canada.
The compliant nature of cerebral blood vessels may represent an important mechanical protection for sustained cerebral perfusion during reductions in arterial blood pressure (ABP). However, whether the rise in cerebrovascular compliance (Ci) with falling ABP persists and exhibits a threshold effect remains unknown. Therefore, we analyzed Ci changes during graded head-up tilt (HUT) in individuals with autonomic failure (AF), a group that tolerates graded and progressive reductions in ABP.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
December 2024
Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL. Electronic address:
Objective: The clinical importance of individualized blood pressure management in optimizing cerebral perfusion during cardiac surgery has been well established. However, consensus on blood pressure goals is lacking. The authors studied the associations between cerebral autoregulation metrics, hemodynamic parameters, and postoperative outcomes, and hypothesized that increased time of mean arterial pressure (MAP) below the lower limit of autoregulation (LLA) is associated with major morbidity and mortality (MMOM) incidence.
View Article and Find Full Text PDFAm J Hypertens
January 2025
Department of Cardiology and Medicine, Hvidovre Hospital, Hvidovre, Denmark.
Background: Leptin is a hormone which is secreted by the adipocytes. In the circulation, leptin levels are directly proportional to the body fat percentage. Studies have shown that higher leptin levels are associated with an increased risk of hypertension after adjusting for body mass index (BMI).
View Article and Find Full Text PDFActa Anaesthesiol Scand
February 2025
Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Background: The harm-benefit balance for early out-of-bed mobilisation of patients with severe acquired brain injury (ABI) in neurointensive care units (neuro-ICUs) is unclear, and there are no clinical guidelines. This study aimed to survey the current clinical practice and perceptions among clinicians involved in first out-of-bed mobilisation in Scandinavian neuro-ICUs.
Methods: This was a cross-sectional, anonymous, web-based survey; the reporting follows the recommended CROSS checklist.
Front Neurol
December 2024
Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States.
Background: Traumatic brain injury (TBI) disrupts normal brain tissue and functions, leading to high mortality and disability. Severe TBI (sTBI) causes prolonged cognitive, functional, and multi-organ dysfunction. Dysfunction of the autonomic nervous system (ANS) after sTBI can induce abnormalities in multiple organ systems, contributing to cardiovascular dysregulation and increased mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!