Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.

Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells. We observed that treatment with A. calamus significantly downregulated the expression of Rab27a and nSMase2 in all tested cells. NTA analysis showed that inhibition of Rab27a and nSMase2 reduced exosome secretion from breast cancer cells. We conducted metabolic profiling of A. calamus extract to reveal the phytochemicals present and docked them on Rab27a and nSMase2 to decipher the compounds responsible for protein inhibition. Molecular dynamic simulations were conducted on lead compounds, and we observed that calcitriol lactone showed the most stable binding interactions with nSMase2. Treatment of breast cancer cells with calcitriol lactone significantly downregulated nSMase2 expression.

Conclusions: Our study demonstrates that A. calamus significantly inhibits exosome secretion in HER2-positive, hormone receptor-positive, and triple-negative breast cancer cells by targeting key regulatory proteins Rab27a and neutral sphingomyelinase 2 (nSMase2). These findings suggest that A. calamus holds therapeutic potential in inhibiting exosome-mediated cancer progression by targeting the exosome secretion pathway. Further investigations are warranted to explore the clinical applications of these findings in breast cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-024-10203-6DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
exosome secretion
20
rab27a nsmase2
16
cancer cells
16
cancer
9
acorus calamus
8
calamus extract
8
nsmase2
8
cancer progression
8
inhibiting exosome
8

Similar Publications

Potential and development of cellular vesicle vaccines in cancer immunotherapy.

Discov Oncol

January 2025

Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.

Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design.

View Article and Find Full Text PDF

Machine learning-based prognostic modeling and surgical value analysis of de novo metastatic invasive ductal carcinoma of the breast.

Updates Surg

January 2025

Department of Radiation Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.

Whether primary lesion surgery improves survival in patients with de novo metastatic breast cancer (dnMBC) is inconclusive. We aimed to establish a prognostic prediction model for patients with de novo metastatic breast invasive ductal carcinoma (dnMBIDC) based on machine learning algorithms and to investigate the value of primary site surgery. The data used in our study were obtained from the Surveillance, Epidemiology, and End Results database (SEER, 2010-2021) and the First Affiliated Hospital of Nanchang University (1st-NCUH, June 2013-June 2023).

View Article and Find Full Text PDF

Role of Acorus calamus extract in reducing exosome secretion by targeting Rab27a and nSMase2: a therapeutic approach for breast cancer.

Mol Biol Rep

January 2025

Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.

Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.

View Article and Find Full Text PDF

Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype.

View Article and Find Full Text PDF

Purpose: Breast cancer remains one of the most prevalent cancers globally, necessitating effective early screening and diagnosis. This study investigates the effectiveness and generalizability of our recently proposed data augmentation technique, attention-guided erasing (AGE), across various transfer learning classification tasks for breast abnormality classification in mammography.

Methods: AGE utilizes attention head visualizations from DINO self-supervised pretraining to weakly localize regions of interest (ROI) in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!