Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Published: January 2025

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups. This degradation led to the breakdown of the polymer and the release of microplastics and nanoplastics. Controlled abrasion tests, conducted in a Denver ball with water, sand, and ceramic balls for 2 h, confirmed that water is a critical factor for fiber release from DFMs. These tests resulted in the release of 0.26 g of PP fibers from 20 DFMs (weighing 62 g in total) with a diameter of 20 µm. Weathering and abrasion tests indicated rapid release and degradation of microplastics and nanoplastics, underscoring the importance of pursuing actions like reuse. Ecotoxicological tests revealed that leachates from the DFM-incorporated mortars showed no adverse effects on Daphnia magna or Selenastrum capricornutum, unlike the reference mortar, which caused substantial toxicity to Daphnia magna. Incorporating PP fibers from DFMs into cement-based mortars showed promising potential, as indicated by favorable ecotoxicity and chemical leaching test results.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-025-35904-8DOI Listing

Publication Analysis

Top Keywords

disposable face
8
face masks
8
cement-based mortars
8
microplastics nanoplastics
8
abrasion tests
8
fibers dfms
8
daphnia magna
8
dfms
6
environmental impact
4
impact disposable
4

Similar Publications

Evaluation of hazardous substances emitted during mask use.

Environ Int

January 2025

Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea. Electronic address:

This study evaluated the inhalation of mask-derived materials by simulating real breathing conditions and examined how the amount of inhaled materials varies with breathing flow rate and duration. Three types of non-certified reusable masks and two types of certified disposable masks were selected. For each mask, five different hazardous materials were captured and analyzed in three replicates with two breathing flow rates of 30 L/min and 85 L/min and two breathing time combinations of 15 min and 60 min.

View Article and Find Full Text PDF

Disposable filtering face piece respirators (FFRs) are not approved for reuse as standard of care. However, lessons learnt from the SARS-CoV-2 pandemic, FFRs decontamination and reuse may be needed as crisis capacity strategy to ensure availability in medical facilities. We studied a decontamination methodology based on atmospheric pressure plasma technology, which allows for rapid, contact-free decontamination without utilisation of harmful chemicals, and suitable to access small pores and microscopic filters openings.

View Article and Find Full Text PDF

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Beyond Juul: The New Face of Underage Nicotine Addiction - A Survey of College Students.

Ther Innov Regul Sci

December 2024

Department of Regulatory and Quality Sciences, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, USA.

Background: Youth nicotine addiction is a major public health concern in the United States. Disposable Electronic Nicotine Delivery Systems (ENDS), or disposable vapes, are commonly sought out by youth despite not having received premarket authorization from the FDA. The objective of this study was to identify factors contributing to underage consumption of disposable ENDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!