Millets for food security and agricultural sustainability.

Planta

School of Molecular and Cellular Biology, Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.

Published: January 2025

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-025-04613-4DOI Listing

Publication Analysis

Top Keywords

millets food
4
food security
4
security agricultural
4
agricultural sustainability
4
millets
1
security
1
agricultural
1
sustainability
1

Similar Publications

Pharmaceutical supplementation and dietary fortification are the most common approaches to reducing vitamin deficits. To improve the health and nutritional value of crops, agronomic biofortification necessitates the direct application of nutrients. Producers using micronutrient fertilizers to increase the fortification of crops are essential to the success of biofortification.

View Article and Find Full Text PDF

Global food production predominantly depends on a limited number of cereal crops; however, numerous other crops have the potential to support the nutrition and economy of many local communities in developing countries. The different crop species characterized as having relatively low perceived economic importance or agricultural significance are known as underutilized crops. Millet is one of the underutilized crops with significant potential to address nutrient and hunger-related challenges in many developing countries like Nepal due to its versatility and climate resilience.

View Article and Find Full Text PDF

To improve the high-value application of millet bran, a water-soluble polysaccharide was extracted from fermented millet bran (FMBP) by using fermentation. A neutral polysaccharide, FMBP-1, was separated and purified from FMBP using an anion exchange column. Its structure and antioxidant activity in vitro were characterized and determined.

View Article and Find Full Text PDF

Effect of by-products-based diet and intramuscular fat content on volatile compounds from pork.

Meat Sci

January 2025

Ghent University, Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent, Belgium. Electronic address:

This study evaluated the effects of a fibre- and fat-rich by-products-based diet and the intramuscular fat (IMF) content on volatile compounds in pork. Meat samples were collected from sixteen gilts included in a feeding trial. Half of the animals were fed a conventional diet based on wheat, maize, barley and soybean meal, whereas the other half were fed a by-products-based diet that contained corn germ meal, malt sprouts, crispbread meal and proticorn, but no cereals or soya.

View Article and Find Full Text PDF

Characterization of Thirty Germplasms of Millet Pepper ( L.) in Terms of Fruit Morphology, Capsaicinoids, and Nutritional Components.

Metabolites

January 2025

Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China.

Background: Millet peppers have rich and diverse germplasm resources. It is of great significance to characterize their phenotypes and physicochemical indicators.

Methods: 30 millet germplasms were selected to measure the fruit length and width, flesh thickness, number of ventricles, fruit stalk length, and single fruit weight, and the texture characteristics of fruit such as hardness, cohesiveness, springiness, gumminess, and chewiness were determined by a texture analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!