Anatomy-driven segmentation of parafoveal optical coherence tomography (OCT) measures may improve associations with clinical outcomes in multiple sclerosis.

J Neurol

Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Published: January 2025

Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.

Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.

Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled. Spectral domain OCT evaluation using 1, 3, 6 mm Early Treatment Diabetic Retinopathy Study grid were conducted. The macular and parafoveal thickness (excluding the 1 mm foveal/umbo contribution) of the retinal nerve fiber layer (RNFL), ganglion cell-inner plexiform layer (GCIPL), ganglion cell layer (GCL), inner plexiform layer (IPL), and the peri-papillary RNFL (pRNFL) were measured. Multivariable step-wise logistic, linear and generalized estimating equation (GEE) regression models were used to assess the association between the OCT parameters and clinical MS outcomes.

Results: The parafoveal RNFL thickness (d = 0.27, p = 0.023), GCL (d = 0.87, p < 0.001), IPL (d = 0.82, p < 0.001), and GCIPL (d = 0.85, p < 0.001) were all significantly lower in pwMS than HCs. Optic neuritis history [odds ratio (OR) = 0.84, p < 0.001] and progressive MS (PMS) status (OR = 0.92, p < 0.001) were both best predicted by parafoveal GCL. The Expanded Disability Status Scale (EDSS) was associated with the parafoveal thickness of GCL (standardized β = -0.472, p < 0.001) and pRNFL (standardized β = 0.187, p = 0.021). The parafoveal GCL thickness as predictor of MS disability was also confirmed by the GEE models.

Conclusion: This investigation supports the potential use of parafoveal OCT segmentation as an alternative assessment method in detecting neuroinflammatory and neurodegenerative processes in MS. Averaging of the parafoveal retinal layer thickness into the OCT measures may increase the sensitivity of the standard macular OCT segmentation outcomes. Further studies should aim at exploring the reproducibility of this OCT outcome and its longitudinal responsiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-024-12866-4DOI Listing

Publication Analysis

Top Keywords

optical coherence
8
coherence tomography
8
tomography oct
8
clinical outcomes
8
multiple sclerosis
8
retinal layer
8
plexiform layer
8
layer
6
oct
5
anatomy-driven segmentation
4

Similar Publications

Self-perceived and measured visual function, the impact of eye-disease, wellbeing, social determinants, and personality traits in Swedish 70-year-olds-results from the Gothenburg H70 Study.

Acta Ophthalmol

January 2025

Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Purpose: To explore the potential correlation between subjective and measured visual function, as well as to analyse the influence of eye disease, socioeconomic factors and emotional dimensions.

Methods: Semi-structured interviews, physical examinations and functional tests (n = 1203). Demographics covered sex, marital status, education, household economy, smoking and alcohol.

View Article and Find Full Text PDF

In this updated expert consensus document, the methods for the quantitative measurement and morphologic assessment of optical coherence tomography (OCT) / optical frequency domain imaging images (OFDI) are briefly summarized. The focus is on the clinical application and the clinical evidence of OCT / OFDI to guide percutaneous coronary interventions.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.

Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.

View Article and Find Full Text PDF

In this paper, a new theoretical model of a partially coherent Laguerre-Gaussian (LG) beam carrying multiple off-axis vortex phases was established. The evolution properties of the focused intensity of the beam after passing through a thin lens were theoretically studied, and then the modulation effect of multiple off-axis vortex phases on the beam with multiring structured intensity was explored. The results indicate that the multiple off-axis vortex phases can reconstruct the multiring structured intensity within the LG beam, thus generating a structured intensity with multilobe and multiring patterns.

View Article and Find Full Text PDF

Background/purpose: Identifying crestal bone level (CBL) on the buccal and lingual aspects poses challenges in conventional dental radiographs. Given that optical coherence tomography (OCT) has the capability to non-invasively provide in-depth information about the periodontium, this in vitro study aimed to assess whether OCT can effectively identify periodontal landmarks and measure CBL in the presence of gingiva.

Materials And Methods: An in-house handheld scanning probe connected to a 1310-nm swept-source OCT (SS-OCT) system, along with self-developed algorithms were employed to measure the CBL in dental models with artificial gingiva.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!