Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity. Here we propose an innovative logic gate using a single light source, with frequency and polarization serving as two virtual inputs. Our design leverages frequency-polarization multiplexed metasurfaces to achieve all basic logic operations by selectively routing surface plasmon polaritons. This single-channel logic gate maintains inherent coherence between frequency and polarization, thereby considerably eliminating stringent light-source specifications and numerous rigid phase controls and resulting in higher stability. Our device showcases unique application potentials in on-chip readout of encryption information by using random sequences as a one-time pad, unlocking fresh prospects for information protection and optical computing with other simple light sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c04954 | DOI Listing |
Transl Vis Sci Technol
January 2025
New England Eye Center, Tufts Medical Center, Boston, MA, USA.
Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.
Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).
Nano Lett
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat, Morocco.
This study assesses radiation doses in multi-slice computed tomography (CT) using epoxy resin and PMMA phantoms, focusing on the relationship between TAR (tissue air ratio) and kilovoltage peak (kVp). The research was conducted using a Hitachi Supria 16-slice CT scanner. An epoxy resin phantom was fabricated from commercially available materials, to simulate human tissue.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.
Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, Beihang University, Beijing 100191, China.
Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!