Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V. A standardized abutment made of Ti6Al4V was fabricated for each implant and screwed into the implant with a screw made of the same material. A shape-identical crown for an upper first molar was fabricated for all implants using the CAD/CAM technique. All specimens were artificially aged using chewing simulation for 1 × 10 cycles and thermocycling between 5 °C and 55 °C for 4 × 10 cycles. After that, all specimens were loaded until failure. This was followed by a 3D analysis of the deformation of the samples. 100% of the samples survived the artificial aging. The Nb1Zr samples failed at 2595 ± 1069 N. In the Ti6Al4V group, failure occurred at 2958 ± 1058 N. The first deformations occurred in both groups from a load of at least 1114 N. The 3D analysis revealed deformations of 0.08 mm in the implant shoulder area of the Nb1Zr implants and of 0.04 mm in the Ti6Al4V implants. This difference was significant (p = 0.016). The investigated Nb1Zr alloy appears to be suitable for implants. The measured load-bearing capacity is significantly higher than the expected intraoral masticatory forces.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-025-06858-7DOI Listing

Publication Analysis

Top Keywords

load-bearing capacity
12
capacity experimental
8
experimental dental
8
dental implant
8
implants
8
chewing simulation
8
artificial aging
8
implant
5
nb1zr
5
ti6al4v
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!